Refine Your Search

Topic

Search Results

Technical Paper

A CFD Investigation of Aerodynamic Effects of Wheel Center Geometry on Brake Cooling

2017-03-28
2017-01-1537
Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies. The axial flow discharge was found to be increased to 0.47 m3/min for the suggested design in comparison to 0.04 m3/min for traditional design.
Technical Paper

A Simplified Computational Fluid Dynamics Approach for Optimizing a Continuously Variable Transmission Casing

2021-09-21
2021-01-1240
The Continuously Variable Transmission (CVT) is a popular form of automotive transmission that uses friction between a belt and pulley to transmit power. Due to the sliding and other losses associated with the belt, power is lost in the form of heat, which must be dissipated to enhance the belt’s life. The task of heat dissipation is, however, complicated by the use of a CVT casing, which serves to protect the transmission from mud, debris, etc. Consequently, the design of an optimum CVT casing for efficient cooling is a challenging task. Experimental approaches or 3D numerical simulation approaches to tackling such problems are either involved or time-consuming or both. This article discusses a novel and simplified strategy for optimizing a CVT casing for maximum heat removal, using computational fluid dynamics (CFD). The rotating pulleys are approximated as heated, rotating cylinders inside a two-dimensional flow domain of the casing.
Technical Paper

Aerodynamic Effect of Aspect Ratio of Spherical Depressions on the Bonnet of Hatchback Cars

2019-12-30
2019-01-5096
Flow separation is one of the primary causes of increase in form drag in vehicles. This phenomenon is also visible in the case of lightweight vehicles moving at high speed, which greatly affects their aerodynamics. Spherical depressions maybe used to delay the flow separation and decrease drag in such vehicles. This study aims for optimization of aspect ratio (AR) of spherical depressions on hatchback cars. Spherical depressions were created on the bonnet of a generalized light vehicle Computer-Aided Design (CAD) model. The diameter of each spherical depression was set constant at 60 mm, and the center-to-center distance between consecutive spherical depressions is fixed at 90 mm. The AR of spherical depressions was taken as the parameter that was varied in each model. ARs 2, 4, 6, and 8 were considered for the current investigation. Three-dimensional (3D) CFD analyses were then performed on each of these models using a validated computational model.
Journal Article

Comparative Tribological Investigation of Mahua Oil and its Chemically Modified Derivatives

2014-04-01
2014-01-0956
For the last decade, the lubricant industry has been trying to formulate biodegradable lubricants with technical characteristics superior to those based on petroleum. A renewable resource, mahua oil, is good alternative to mineral oil because of its environmentally friendly, non toxic and readily biodegradable nature. The triacylglycerol structure of mahua oil is amphiphilic in character that makes it an excellent candidate as lubricant and functional fluid. It is also very attractive for industrial applications that have potential for environmental contact through accidental leakage, dripping or generates large quantities of after-use waste materials requiring costly disposal. Vegetable oil in its natural form has limited use as industrial fluids due to poor thermo-oxidation stability, low temperature behavior and other tribochemical degrading processes.
Technical Paper

Computational Analysis of Flap Camber and Ground Clearance in Double-Element Inverted Airfoils

2019-06-11
2019-01-5065
Drag and lift are the primary aerodynamic forces experienced by automobiles. In competitive automotive racing, the design of inverted wings has been the subject of much research aimed at improving the performance of vehicles. In this direction, the aerodynamic impact of change in maximum camber of the flap element and ground effect in a double-element inverted airfoil was studied. The National Advisory Committee for Aeronautics (NACA) 4412 airfoil was taken as the constant main element. The camber of the flap element was varied from 0% to 9%, while ground clearance was varied from 0.1c to 1.0c. A two-dimensional (2D) Computational Fluid Dynamics (CFD) study was performed using the realizable k-ε turbulence model in ANSYS Fluent 18.2 to analyze the aerodynamic characteristics of the airfoil. Parameters such as drag coefficient, lift coefficient, pressure distribution, and wake flow field were investigated to present the optimum airfoil configuration for high downforce and low drag.
Technical Paper

Design Methodology and Development of an Economical 3D Printer

2016-04-05
2016-01-0325
Additive manufacturing has experienced rapid growth over a span of 25 years. Additive manufacturing involves the development of a three-dimensional (3D) object by stacking layer upon layer. Conventional machining techniques involve the removal of material. However, this technique differentiates itself from other techniques by means of addition of the material. The integration of CAD with additive manufacturing has offered the ability to create complex structures. Despite its clear benefits, additive manufacturing suffers from a high initial investment. An average cost of an entry level commercial 3D printer is 600$. A low-cost 3D printer has been designed and built for experimental investigation within a budget of 300$. The paramount process of 3D printing involves a combination of interpreting data from CAD files and controlling the motors using this data. The various design considerations while developing the 3D printer have been discussed.
Technical Paper

Design and Analysis of Modified Radiator Fins to Improve Overall Cooling Efficiency

2020-09-15
2020-01-2029
Internal Combustion engines have been a significant component of the industrial development in the 20th and 21st centuries. However, the high working temperatures cause extensive wear and tear among the parts and results in a loss in fuel efficiency and ultimately seize the engine. To prevent this, there was a need for a cooling system. The current systems cool the vehicle's engine by transferring heat from the engine to the coolant/water in the water jacket from where it reaches the radiator via tubes, and the hot temperature coolant is cooled. This article proposes a change in the design of radiator fins to improve the overall cooling efficiency of such systems. As radiator fins are instrumental in the heat transfer process, a design change in them results in substantial changes in the output efficiency results. The central concept that is utilized is to increase the surface area of the fins, which would increase the rate of heat loss from the pipes.
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

2015-09-29
2015-01-2863
There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
Technical Paper

Design and Optimization of Composite Horizontal Axis Wind Turbine (Hawt) Blade

2018-04-03
2018-01-1034
Wind energy is clean and renewable source of energy that is an attractive alternative to non-conventional sources of energy. Due to rapid increase in global energy requirements, this form of energy is gaining its share of importance. Unlike nuclear power or tar sand oils, wind energy does not leave a long-term toxic legacy. Using MATLAB algorithms, multi-optimization of wind turbine design can be achieved. Therefore, an aerodynamic mathematical model is developed to obtain the optimal chord length and twist angle distribution along the blade span. Further, a promising generic blade design is used to initialize a detailed structure optimization wherein leading edge panel (LEP), Spar cap, Shear web, Trailing edge panel (TEP) reinforcement are sized using composite laminates so that the blade is according to the intended design standard. Initially blade airfoils are analyzed on 2D platform and then the results are used to construct 3D model of Horizontal Axis Wind Turbine (HAWT) blade.
Technical Paper

Design, Control Surface Optimization and Stability Analysis of a Blended Wing Body Aircraft (BWB) Unmanned Aerial Vehicle

2021-03-02
2021-01-0040
Unmanned Aerial Vehicles (UAVs) are becoming an effective way to serve humanitarian relief efforts during environmental disasters. The process of designing such UAVs poses challenges in optimizing design variables such as maneuverability, payload capacity and maximizing endurance because the designing of a BWB takes into account the interdependency between the stability and aerodynamic performance. The Blended Wing Body is an unconventional aircraft configuration which offers enhanced performance over conventional UAVs. In this study the designing of a BWB is investigated with an aim to achieve structurally sound and aerodynamically stable configuration. The design has been done by taking into consideration the side and top view airfoil for fuselage, because fuselage is a major lift generating portion in the UAV. For designing the control surfaces, the two major requirements for a controlled and safe flight of a UAV are its stability and maneuverability.
Technical Paper

Development of Fuzzy Based Decision Structure for Automotive Airbag Control Unit

2017-01-10
2017-26-0349
This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
Technical Paper

Effect of Fender Coverage Angle on the Aerodynamic Drag of a Bicycle

2019-10-11
2019-01-5086
While riding cycles, cyclists usually experience an aerodynamic drag force. Over the years, there has been a global effort to reduce the aerodynamic drag of a cycle. Fenders affect the aerodynamic drag of a cycle to a large extent, and fender coverage has a pronounced effect on the same. In this article, various fender coverage angles, varying from 60° to 270°, were studied to predict the aerodynamic drag with the help of a validated CFD model in SolidWorks Flow Simulation. The model was based on the Favre-Averaged Navier-Stokes (FANS) equations solved using the k-ɛ model. It was predicted that aerodynamic drag coefficient reduced fender coverage angle up to 135°, and thereafter started increasing. Analyses were carried out at velocities of 6 m/s, 8 m/s and 10 m/s and the results were found to be similar, with a minimum aerodynamic drag coefficient at 135° occurring in all the cases under study.
Technical Paper

Experimental Study of Sliding Wear Behavior of the Casted Lead Bronze Journal Bearing Material

2019-04-02
2019-01-0824
Lead (Pb) bronze material is used for the manufacturing of bearings. Lead provides less friction and wear-related properties to bronze. During working of the bearings the lead contained micro-chips mixes with the lubricant oil and makes its disposal difficult. Rotational speed and applied load are the two main parameters on which the working and amount of wear from the bearing depend. So it is important to find out an optimum set of speed and pressure on which a particular bearing should operate to minimize the wear and hence minimize the lead-contaminated lubricating oil. In the present work, Taguchi technique has been used to find out the optimum values of speed and pressure. To measure the specific wear rate (SWR) and coefficient of friction (COF) of the leaded bronze material, it is made to slide on a mild steel material and amount of wear and coefficient of friction has been recorded using a pin on disc machine using ASTM-G99 standards.
Technical Paper

Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

2015-09-15
2015-01-2576
The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
Technical Paper

Low Cost Optimization of Engine Emissions for an Intake Runner Designed for Medium Capacity CI Engine through Correlations between Emission Values and Intake Configurations

2016-04-05
2016-01-1004
The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
Technical Paper

Mathematical Modeling of the Longitudinal Motion of a Vehicle with a Continuously Variable Transmission

2021-09-21
2021-01-1237
The Continuously Variable Transmission (CVT) is a widely adopted transmission system. The operation of a CVT is simple, but successfully foretelling the longitudinal motion of a vehicle that utilizes this transmission is sophisticated. As a result, different vehicles taking part in BAJA-SAE competitions were developed using various strategies to model the vehicle’s longitudinal dynamics and CVT operation. This article aims to provide a tool for obtaining a quantitative estimate of the longitudinal performance of a CVT equipped vehicle and for the selection of an optimal drive-train gear ratio for such a vehicle. To this end, this article proposes a novel, relatively simple, and reasonably accurate mathematical approach for modeling the longitudinal motion of a vehicle utilizing a CVT, which was developed by a novel integration of existing vehicle dynamics concepts.
Technical Paper

Numerical Investigation on Aerodynamic Effects of Vanes and Flaps on Automotive Underbody Diffusers

2017-09-19
2017-01-2163
The automotive underbody diffuser is an expansion device which works by speeding up the air flowing underneath a vehicle. This reduces the pressure below the vehicle thereby increasing downforce. When designed properly, it can lead to a massive gain in downforce and even a reduction in drag. However, a majority of the research and development is restricted to motorsport teams and supercar manufacturers and is highly secretive. Most of the publicly available research has been done for very simple shapes (bluff bodies) to study the effects of ground clearance and rake angle. Very little research has been done for complex geometries with vanes, flaps and vortex generators. This paper aims to investigate the effects of the addition of vanes/strakes and flaps, their location as well as angle, on diffuser performance. Computational Fluid Dynamics simulations have been carried out using three dimensional, steady state RANS equations with the k-ε turbulence model on STAR CCM+ V9.06.
Technical Paper

Optimisation of Expansion Ratio of an Advanced Compressed Air Engine Kit

2016-04-05
2016-01-1283
Worldwide, research is going on numerous types of engines that practice green and alternative energy such as natural gas engines, hydrogen engines, and electric engines. One of the possible alternatives is the air powered car. Air is abundantly available and can be effortlessly compressed to higher pressure at a very low cost. After the successful development of Compressed Air Engines, engineers shifted their focus in making this technology cost effective and feasible. This led to advancement in the field of pneumatics that is advanced Compressed Air Engine Kit (used for conversion of a small-two stroke SI engine to Compressed Air Engine) where its frugality and compatibility is kept at high priority. This research is in continuation with our previous project of development of an advanced Compressed Air Engine kit and optimisation of injection angle and injector nozzle area for maximum performance.
Technical Paper

Optimization Analysis of Injection Angle and Injector Nozzle of an Advanced Compressed Air Engine Kit

2015-04-14
2015-01-1678
Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
Technical Paper

Optimization of Biodiesel Production from Deodar Oil Using Response Surface Methodology [RSM]

2018-10-23
2018-01-5041
Biodiesel (fatty acid methyl ester, or FAME) can be used as an alternative fuel for diesel engines which is produced by the chemical reaction of vegetable oil or animal fat with an alcohol such as ethanol or methanol in the presence of a catalyst. The growing interest in biodiesel is because of the similarity in its properties when compared with the diesel fuel as well as various benefits it provides such as lower soot emissions, less dependency on crude oil, etc. The optimization of experimental parameters, such as catalyst concentration, molar ratio of alcohol to oil, and reaction time, on the transesterification for the production of deodar methyl ester was performed in this article. Optimization of the transesterification process of deodar oil was achieved by a three-factorial central composite design (CCD) using response surface methodology (RSM) in 20 experimental runs. The RSM was performed to determine the optimum operating conditions and to optimize the biodiesel yield.
X