Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Study on Homogeneous Combustion in Porous Medium Internal Combustion Engine: A Review

2017-03-28
2017-01-0788
Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
Journal Article

Comparative Tribological Investigation of Mahua Oil and its Chemically Modified Derivatives

2014-04-01
2014-01-0956
For the last decade, the lubricant industry has been trying to formulate biodegradable lubricants with technical characteristics superior to those based on petroleum. A renewable resource, mahua oil, is good alternative to mineral oil because of its environmentally friendly, non toxic and readily biodegradable nature. The triacylglycerol structure of mahua oil is amphiphilic in character that makes it an excellent candidate as lubricant and functional fluid. It is also very attractive for industrial applications that have potential for environmental contact through accidental leakage, dripping or generates large quantities of after-use waste materials requiring costly disposal. Vegetable oil in its natural form has limited use as industrial fluids due to poor thermo-oxidation stability, low temperature behavior and other tribochemical degrading processes.
Technical Paper

Design and Simulated Analysis of Regenerative Suspension System with Hydraulic Cylinder, Motor and Dynamo

2017-03-28
2017-01-1284
With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Experimental Study of Sliding Wear Behavior of the Casted Lead Bronze Journal Bearing Material

2019-04-02
2019-01-0824
Lead (Pb) bronze material is used for the manufacturing of bearings. Lead provides less friction and wear-related properties to bronze. During working of the bearings the lead contained micro-chips mixes with the lubricant oil and makes its disposal difficult. Rotational speed and applied load are the two main parameters on which the working and amount of wear from the bearing depend. So it is important to find out an optimum set of speed and pressure on which a particular bearing should operate to minimize the wear and hence minimize the lead-contaminated lubricating oil. In the present work, Taguchi technique has been used to find out the optimum values of speed and pressure. To measure the specific wear rate (SWR) and coefficient of friction (COF) of the leaded bronze material, it is made to slide on a mild steel material and amount of wear and coefficient of friction has been recorded using a pin on disc machine using ASTM-G99 standards.
Technical Paper

Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

2015-09-15
2015-01-2576
The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
Technical Paper

Optimisation of Expansion Ratio of an Advanced Compressed Air Engine Kit

2016-04-05
2016-01-1283
Worldwide, research is going on numerous types of engines that practice green and alternative energy such as natural gas engines, hydrogen engines, and electric engines. One of the possible alternatives is the air powered car. Air is abundantly available and can be effortlessly compressed to higher pressure at a very low cost. After the successful development of Compressed Air Engines, engineers shifted their focus in making this technology cost effective and feasible. This led to advancement in the field of pneumatics that is advanced Compressed Air Engine Kit (used for conversion of a small-two stroke SI engine to Compressed Air Engine) where its frugality and compatibility is kept at high priority. This research is in continuation with our previous project of development of an advanced Compressed Air Engine kit and optimisation of injection angle and injector nozzle area for maximum performance.
Technical Paper

Optimization Analysis of Injection Angle and Injector Nozzle of an Advanced Compressed Air Engine Kit

2015-04-14
2015-01-1678
Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Study of Starting Friction during the Running of Plain Journal Bearing under Hydrodynamic Lubrication Regime

2018-04-03
2018-01-0838
Study of starting friction during the running of the engineering application has an important role in designing them, especially working at low speed and high load conditions. A significant portion of research and development today is concentrated on saving the energy by reducing the friction. The present paper addresses the measurement technique and analysis of the starting friction during the running of the journal bearing. The experiments were performed during the hydrodynamic lubrication regime using SAE 15W-30 lubricating oil. A journal bearing having journal diameter as 22 mm, length/diameter ratio 1 and 0.027 mm radial clearance has been designed and fabricated to test the starting friction. Analysis of starting friction and average friction torque during the running of journal bearing was done at 900, 1150, 1400, 1650, 1900, 2150 and 2400 revolution per minute (rpm) speed of the journal at load values of 250, 400 and 500 N.
Technical Paper

Studying Synthesis of Thermally and Chemically Modified Plant Oil and their Tribological Evaluation for Use as a Base Stock for Environmentally Friendly Bio-Lubricant

2014-04-01
2014-01-1477
The world today is facing severe oil crisis and environmental pollution, thus there is a great urgency of developing and applying bio based products as a substitute to mineral oil based products. Rapid industrialization and automation in the last decade has increased the demand of mineral oil based lubricant that will get exhausted in the years to come. Also in addition to the above fact, the biodegradability of mineral-oil based lubricants is around 25% maximum. About 50% of all lubricants sold worldwide end up in the Environment. Due to extensive use of mineral oil based lubricants, several environmental issues such as surface water and groundwater contamination, Air pollution, soil contamination, agricultural product and food contamination are emerging very rapidly. This has led the researchers to look for plant oil based bio- lubricant as an alternative to mineral oil based lubricant.
Technical Paper

Transient Analysis of Natural Convection around a Pair of Circular Cylinders inside a Square Enclosure

2018-04-03
2018-01-0776
Heat exchangers are widely used in various transportation, industrial, or domestic applications such as thermal power plants, means of heating, transporting and air conditioning systems, electronic equipment and space vehicles. In all these applications improvements in the efficiency of the heat exchangers can lead to substantial cost, space and material savings. Hence considerable research work has been done in the past to seek effective ways to improve the efficiency of heat exchangers. In this paper the effect of natural convection is justified between exterior solid wall surfaces and the surrounding air inside the enclosure. Designing of electronic devices, heavy industrial equipments such as boilers, turbines etc. and building aerodynamics are some of the real world application associated with this study.
Technical Paper

Tribological Performance of Lubricating Oil Contaminated with Fine Dust Particles

2014-09-30
2014-01-2334
The economics of operating internal combustion engines in cars, buses and other automotive equipment is heavily affected by friction and wear losses caused by abrasive contaminants. As such, dust is a universal pollutant of lubricating oils. Road dust consists of depositions from vehicular and industrial exhausts, tire and brake wear, dust from paved roads or potholes, and from construction sites. Present research investigates the influence of dust powder of size 5 μm-100 μm as contaminant in SAE 20W-40 lubricant on the relative motion of a plane surface over the other having circular surface in contact. A pin-on-disk setup as per ASTM G99 has been used to conduct the experiments, firstly at increasing rpm keeping constant load of 118 N, and secondly by increasing loads, keeping rpm constant at 1000. The contaminated lubricant has been used to study its influence on friction and wear rate at the interface of pin of 12 mm diameter and disk at track diameter of 98 mm.
X