Refine Your Search

Topic

Search Results

Journal Article

360° Surround View System with Parking Guidance

2014-04-01
2014-01-0157
In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper

A Non Traditional Solution for High Vibration Connection Systems

2014-04-01
2014-01-0221
As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts.
Technical Paper

A Prognostic and Data Fusion Based Approach to Validating Automotive Electronics

2014-04-01
2014-01-0724
There is a continual growth of test and validation in high reliability product applications such as automotive, military and avionics. Principally this is driven by the increased use and complexity of electronic systems deployed in vehicles, in addition to end user reliability expectations. Higher reliability expectations consequently driving increased test durations. Furthermore product development cycles continue to reduce, resulting in less available time to perform accelerated life tests. The challenge for automotive electronic suppliers is performing life tests in a shorter period of time whilst reducing the overall associated costs of validation testing. In this paper, the application of prognostic and health monitoring techniques are examined and a novel approach to the validation and testing of automotive electronics proposed which it is suggested may be more cost effective and efficient than traditional testing.
Technical Paper

Adaptation of the Mean Shift Tracking Algorithm to Monochrome Vision Systems for Pedestrian Tracking Based on HoG-Features

2014-04-01
2014-01-0170
The mean shift tracking algorithm has become a standard in the field of visual object tracking, caused by its real time capability and robustness to object changes in pose, size, or illumination. The standard mean shift tracking approach is an iterative procedure that is based on kernel weighted color histograms for object modelling and the Bhattacharyyan coefficient as a similarity measure between target and candidate histogram model. The benefits of the approach could not been transferred to monochrome vision systems yet, because the loss of information from color to grey-scale histogram object models is too high and the system performance drops seriously. We propose a new framework that solves this problem by using histograms of HoG-features as object model and the SOAMST approach by Ning et al. for track estimation. Mean shift tracking requires a histogram for object modelling.
Technical Paper

Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads

2014-04-01
2014-01-1790
During the evolution of Hybrid vehicles as well as electrical vehicles the need for an additional Voltage level was defined for the utilization of high power loads like electrical compressors, electrical heaters as well as power steering and electrical pumps. The main systems benefit is the generation of approximately 12 kW electrical power by a traditional belt driven Generator. This allows boost function for acceleration and recuperation for mild hybrid vehicles with the target to reduce up to 15% CO2 by keeping the traditional thermal based engines. Delphi has developed systems and components that meet the special 48 Volt related electrical requirements on arcing, hot plugging and corrosion. Our benefit is the long term expertise within the total system know how and the derived technical specification and needs.
Technical Paper

Beyond Euro VI - Development of A Next Generation Fuel Injector for Commercial Vehicles

2014-04-01
2014-01-1435
Delphi Diesel Systems (DDS) - Heavy Duty Business is developing a new range of Ultra High Pressure Common Rail Fuel Injectors with the functionality to allow the combustion heat release to be heavily adapted during operation. This allows the injector performance to be simultaneously optimised across a broad range of engine conditions, removing the constraints of having to select a single rate shape type for all operating conditions. This new technology range builds on the performance of Delphi's 2700 bar Fuel Systems of F2E, F2P and F2R, whilst adding in new levels of injector control, beyond what is available in the current market. In addition to this new functionality, Delphi's new Heavy Duty Injector range also demonstrates greatly reduced leakage and improved accuracy of fuel control. This paper reviews the benefits and possibilities of this new injector technology.
Technical Paper

Concept of Virtual Engine Control Module for High Quality and Time Efficient Verification and Testing of Powertrain Engine Control Module

2015-04-14
2015-01-0170
Wide varieties of vehicle Engine Management Systems are designed by different Tier#1 suppliers to meet highly complex requirements with the help of electronics. Emerging technologies and features of Engine Management Systems require a number of strategies for reducing the overall timing for verification with high quality testing. Analysis and decoding of data especially for highly critical and complex such as gasoline direct injection (GDi) engine fuel delivery output, high pressure fuel pump (HPFP), spark control output and different varieties of engine position signals are time consuming. This paper introduces Virtual Engine Control Module (VECM) technology to solve the problem of decoding complex signals and high level verification. A proposed test bench setup consists of VECM, ECM, simulator and real actuator load with complete software flashed inside the ECM.
Journal Article

Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars

2014-04-01
2014-01-1522
Similar to single-brick SCR architectures, the multi-brick SCR systems described in this paper require urea injection control software that meets the NOx conversion performance target while maintaining the tailpipe NH3 slip below a given threshold, under all driving conditions. The SCR architectures containing a close-coupled SCRoF and underfloor SCR are temperature-wise more favorable than the under-floor location and lead to significant improvement of the global NOx conversion, compared to a single-brick system. But in order to maximize the benefit of close-coupling, the urea injection control must maximize the NH3 stored in the SCRoF. The under-floor SCR catalyst can be used as an NH3 slip buffer, lowering the risk of NH3 slip at the tailpipe with some benefit on the global NOx conversion of the system. With this approach, the urea injection strategy has a limited control on the NH3 coverage of the under-floor SCR catalyst.
Technical Paper

Delphi's Heated Injector Technology: The Efficient Solution for Fast Ethanol Cold Starts and Reduced Emissions

2012-04-16
2012-01-0418
Most current flex-fuel vehicles are capable of operating on gasoline/ethanol blends from E0 to E85. The presence of gasoline in the fuel enables cold startability because some of its more volatile components can still vaporize at cold temperatures and produce an ignitable mixture. However when E100 is used, other means are required for cold starting because of ethanol's relatively low vapor pressure at low temperatures. A common technique is to employ an auxiliary gasoline fuel system for use only when temperatures are too low for the vehicle to start on E100 alone. But the added cost, complexity and maintenance of such systems have driven the search for a simpler approach. One such technique is to heat the fuel prior to injection. Fuel systems currently exist where heating occurs within the main conduit of the fuel rail. Another method is to heat the fuel within each fuel injector.
Technical Paper

Design Guidelines for Automotive Fuel Level Sensors

2002-03-04
2002-01-1074
Most current automotive and light truck fuel level sensors are essentially rotary potentiometers that have been designed to survive the chemically harsh environments found in the fuel tank. This paper will chronicle the design improvements made from the early wire wound versions to today's more robust thick film ink systems. The paper will highlight potential failure modes and discuss techniques to reduce noise and increase wear life. Data will be provided regarding changes in the circuit layout, ink compositions, and contact materials. Special consideration will be given to the adverse effects associated with the reactive sulfur prevalent in today's fuels.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Technical Paper

Development of a Low-Noise High Pressure Fuel Pump for GDi Engine Applications

2013-04-08
2013-01-0253
Fuel systems associated with Gasoline Direct Injection (GDi) engines operate at pressures significantly higher than Port Fuel Injection (PFI) engine fuel systems. Because of these higher pressures, GDi fuel systems require a high pressure fuel pump in addition to the conventional fuel tank lift pump. Such pumps deliver fuel at high pressure to the injectors multiple times per engine cycle. With this extra hardware and repetitive pressurization events, vehicles equipped with GDi fuel systems typically emit higher levels of audible noise than those equipped with PFI fuel systems. A common technique employed to cope with pump noise is to cover or encase the pump in an acoustic insulator, however this method does not address the root causes of the noise. To contend with the consumer complaint of GDi system noise, Delphi and Magneti Marelli have jointly developed a high pressure fuel pump with reduced audible output by concentrating on sources of noise generation within the pump itself.
Journal Article

EMC Management in HEV/EV Applications

2014-04-01
2014-01-0219
Shielding of the high voltage cabling is a cost effective method for reducing unwanted EMI in hybrid and electric vehicles. Ensuring the shielding effectiveness (SE) of the high voltage (HV) cabling and connectors is critical at the component and subsystem level. The effectiveness of the shielding must also be proven for the useful life of the vehicle. This paper will examine some of the critical aspects of ensuring good SE of HV cabling and connectors in hybrid and electric vehicles. This paper will also review some of the test methods utilized to make these measurements.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

F2E - Ultra High Pressure Distributed Pump Common Rail System

2014-04-01
2014-01-1440
Delphi Diesel Systems' 2700bar Proven F2E Distributed Pump Common Rail System (DPCRS) has been developed to meet the requirements of Euro VI and future emissions legislation and is now in volume production in Heavy Duty Vehicles. Incorporating a number of ground breaking new technologies, the system offers numerous performance advantages. F2E provides full common rail functionality for camshaft driven Fuel Injection Equipment (FIE) engines with minimum modification. By delivering precise and accurate control of multiple injections at maximum rail pressure across all engine operating conditions, the system minimizes the demands on exhaust after treatment systems. Additionally F2E provides real time flexible capacity by employing a unique method of pump fuel metering, enabling the most efficient and accurate transient control of rail pressure combined with the low NVH and optimised efficiency.
Journal Article

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-04-14
2015-01-0746
The focus of this study is investigation of the influence of fuel system pressure, intake tumble charge motion and injector seat specification - namely the static flow and the plume pattern - on the GDi engine particulate emissions under the homogenous combustion operation. The paper presents the spray characteristics and the single cylinder engine combustion data for the Delphi Multec® 14 GDi multi-hole fuel injector, capable of 40 [MPa] fuel system pressure. It provides results of a study of the influence of fuel pressure increase between 5 [MPa] to 40 [MPa], for three alternative seat designs, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel consumption. In conjunction with the fuel system pressure, the effect of enhanced charge motion on the combustion characteristics is investigated.
Journal Article

Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems

2014-04-01
2014-01-1209
The progressive trend towards the GDi engine downsizing, the focus on better fuel efficiency and performance, and the regulatory requirements with respect to the combustion emissions have brought the focus of attention on strategies for improvement of in-cylinder mixture preparation and identification and elimination of the sources of combustion emissions, in particular the in-cylinder particulate formation. This paper discusses the fuel system components, injector dynamics, spray characteristics and the single cylinder engine combustion investigation of a 40 [MPa] capable conventional GDi inwardly-opening multi-hole fuel injection system. It provides results of a study of the influence of fuel system pressure increase between 5 [MPa] to 40 [MPa], in conjunction with the injector static flow and spray pattern, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel economy.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Individual Cylinder Fuel Control for a Turbocharged Engine

2014-04-01
2014-01-1167
This paper discusses on-engine results achieved in applying an algorithm-based Individual Cylinder Fuel Control (ICFC) to turbocharged four-cylinder engines. ICFC is a software algorithm which permits the detection and closed-loop correction of air/fuel imbalances on a cylinder-by-cylinder basis, which is not possible with typical bank-wide closed loop fuel control systems. Cylinder-to-cylinder air/fuel imbalances can be the result of a number of combined sources. The potential sources include fuel injector variation (both new and aged) as well as maldistribution of fresh air airflow, evaporative emissions purge flow, or exhaust gas recirculation flow. The ICFC algorithm requires no additional hardware beyond the typical sensor set already present on modern automotive spark-ignition engines, including oxygen sensor(s) and engine controller.
Technical Paper

Modeling of the Impact of Ultrasonic Welding of Harness on the Terminals Integrity

2014-04-01
2014-01-0224
The ultrasonic (US) welding of wires in automotive harnesses is increasingly used as an alternative to mechanical splices. However, this welding process may harm the electrical terminals crimped on the wires ends as a result on the energy propagation along the wire up the terminal with a frequency that is close to the terminals' natural frequencies. The modeling of the ultrasonic welding had been investigated by several authors from the process and weld strength perspective but the modeling of its effect on electrical terminals in automotive harnesses has not been given much attention in the literature. This paper describes and illustrates approaches used for modeling of the impact of the US welding on the electrical terminals in terms of stress and deformation from qualitative and quantitative perspectives and the related benefits/limitations from predictive standpoint. Illustrations are given on an actual terminal with respect to a typical ultrasonic welding process.
X