Refine Your Search

Topic

Author

Search Results

Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

Analysis of Vehicle Performance at the FutureTruck 2002 Competition

2003-03-03
2003-01-1255
In June of 2002, 15 universities participated in the third year of FutureTruck, an advanced vehicle competition sponsored by the U.S. Department of Energy and Ford Motor Company. Using advanced technologies, teams strived to improve vehicle energy efficiency by at least 25%, reduce tailpipe emissions to ULEV levels, and lower greenhouse gas impact of a 2002 Ford Explorer. The competition vehicles were tested for dynamic performance and emissions and were judged in static events to evaluate the design and features of the vehicle. The dynamic events include braking, acceleration, handling, and fuel economy, while the dynamometer testing provided data for both the emissions event and the greenhouse gas event. The vehicles were scored for their performance in each event relative to each other; those scores were summed to determine the winner of the competition. The competition structure included different available fuels and encouraged the use of hybrid electric drivetrains.
Technical Paper

Assessing Tank-to-Wheel Efficiencies of Advanced Technology Vehicles

2003-03-03
2003-01-0412
This paper analyzes four recent major studies carried out by MIT, a GM-led team, Directed Technologies, Inc., and A. D. Little, Inc. to assess advanced technology vehicles. These analyses appear to differ greatly concerning their perception of the energy benefits of advanced technology vehicles, leading to great uncertainties in estimating full-fuel-cycle (or “well-to-wheel”) greenhouse gas (GHG) emission reduction potentials and/or fuel feedstock requirements per mile of service. Advanced vehicles include, but are not limited to, advanced gasoline and diesel internal combustion engine (ICE) vehicles, hybrid electric vehicles (HEVs) with gasoline, diesel, and compressed natural gas (CNG) ICEs, and various kinds of fuel-cell based vehicles (FCVs), such as direct hydrogen FCVs and gasoline or methanol fuel-based FCVs.
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

2003-06-23
2003-01-2252
This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Technical Paper

Comparing Apples to Apples: Well-to-Wheel Analysis of Current ICE and Fuel Cell Vehicle Technologies

2004-03-08
2004-01-1015
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete well-to-wheel evaluation must be performed to determine the potential impact of a technology on carbon dioxide and Green House Gases (GHGs) emissions. Several modeling tools developed by Argonne National Laboratory (ANL) were used to evaluate the impact of advanced powertrain configurations. The Powertrain System Analysis Toolkit (PSAT) transient vehicle simulation software was used with a variety of fuel cell system models derived from the General Computational Toolkit (GCtool) for pump-to-wheel (PTW) analysis, and GREET (Green house gases, Regulated Emissions and Energy use in Transportation) was used for well-to-pump (WTP) analysis. This paper compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional, hybrid and fuel cell technologies.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Critical Factors in the Development of Well-To-Wheel Analyses of Alternative Fuel and Advanced Powertrain Heavy-Duty Vehicles

2016-04-05
2016-01-1284
A heavy-duty vehicle (HDV) module of the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model has been developed at Argonne National Laboratory. The fuel-cycle GREET model has been published extensively and contains data on fuel-cycles and vehicle operation of light-duty vehicles. The addition of the HDV module to the GREET model allows for well-to-wheel (WTW) analyses of heavy-duty advanced technology and alternative fuel vehicles (AFVs), which has been lacking in the literature. WTW analyses of HDVs becomes increasingly important to understand the fuel consumption and greenhouse gas (GHG) emissions impacts of newly enacted and future HDV regulations from the Environmental Protection Agency and the Department of Transportation’s National Highway Traffic Safety Administration.
Technical Paper

Efficiency Improved Combustion System for Hydrogen Direct Injection Operation

2010-10-25
2010-01-2170
This paper reports on research activities aiming to improve the efficiency of direct injected, hydrogen powered internal combustion engines. In a recent major change in the experimental setup the hydrogen single cylinder research engine at Argonne National Laboratory was upgraded to a new engine geometry providing increased compression ratio and a longer piston stroke compared to its predecessor. The higher compression ratio and the more advantageous volume to surface ratio of the combustion chamber are both intended to improve the overall efficiency of the experimental setup. Additionally, a new series of faster acting, piezo-activated injectors is used with the new engine providing increased flexibility for the optimization of DI injection strategies. This study focuses on the comparison of experimental data of the baseline versus the improved single cylinder research engine for similar engine operating conditions.
Technical Paper

Efficiency and Emissions Potential of Hydrogen Internal Combustion Engine Vehicles

2011-01-19
2011-26-0003
This paper reviews and summarizes recent developments in hydrogen (H2) powered engine and vehicle research. Following an overview of mixture formation strategies, general trade-offs when operating engines on hydrogen are analyzed and highlights regarding accomplishments in efficiency improvement and emissions reduction are presented. These include estimates of efficiency potential of direct-injection hydrogen engines based on single-cylinder research engine data, fuel economy and emissions results of hydrogen powered passenger cars and pickup trucks as well as the impact and potential of hydrogen/methane blended operation.
Technical Paper

Efficiency-Optimized Operating Strategy of a Supercharged Hydrogen-Powered Four-Cylinder Engine for Hybrid Environments

2007-07-23
2007-01-2046
As an energy carrier, hydrogen has the potential to deliver clean and renewable power for transportation. When powered by hydrogen, internal combustion engine technology may offer an attractive alternative to enable the transition to a hydrogen economy. Port-injected hydrogen engines generate extremely low emissions and offer high engine efficiencies if operated in a lean combustion strategy. This paper presents experimental data for different constant air/fuel ratio engine combustion strategies and introduces variable air/fuel ratio strategies for engine control. The paper also discusses the shift strategy to optimize fuel economy and contrasts the different engine control strategies in the conventional vehicle environment. The different strategies are evaluated on the urban driving cycle, then engine behaviors are explained and fuel economy is estimated. Finally, the paper projects the potential of hybridization and discusses trends in powertrain cycle efficiencies.
Technical Paper

Energy Efficiency Benefits of Active Transmission Warm-up under Real-World Operating Conditions

2018-04-03
2018-01-0385
Active transmission warm-up systems are used by automotive manufacturers in effort to increase powertrain efficiency and decrease fuel consumption. These systems vary from one manufacturer to another, but their main goal is to capture waste heat from the powertrain and accelerate transmission fluid warm-up. In this study, the fuel consumption benefit from the active transmission warm-up system in a 2013 Ford Taurus 2.0 L EcoBoost is quantified on a cold start UDDS drive cycle at ambient temperatures of −7 and 21 °C. In addition to this, the fuel consumption and greenhouse gas emissions impact on the EPA 5-cycle test, hot start HWY drive cycle, and a cold start, constant speed drive cycle is also quantified. An extra effort to determine the maximum possible benefit of active transmission warm-up is made by modifying the test vehicle to provide external heating to pre-heat and further accelerate the transmission fluid warm-up.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045

2009-04-20
2009-01-1008
Fuel cell vehicles are undergoing extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and there is limited demand for hydrogen at present, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. This paper compares the fuel economy potential of hydrogen powertrains to conventional gasoline vehicles. Several timeframes are considered: 2010, 2015, 2030, and 2045. To address the technology status uncertainty, a triangular distribution approach was implemented for each component technology. The fuel consumption and cost of five powertrain configurations will be discussed and compared with the conventional counterpart.
Technical Paper

Fuel-Cycle Energy and Emissions Impacts of Propulsion System/Fuel Alternatives for Tripled Fuel-Economy Vehicles

1999-03-01
1999-01-1118
This paper presents the results of Argonne National Laboratory's assessment of the fuel-cycle energy and emissions impacts of 13 combinations of fuels and propulsion systems that are potential candidates for light-duty vehicles with tripled fuel economy (3X vehicles). These vehicles are being developed by the Partnership for a New Generation of Vehicles (PNGV). Eleven fuels were considered: reformulated gasoline (RFG), reformulated diesel (RFD), methanol, ethanol, dimethyl ether, liquefied petroleum gas (LPG), compressed natural gas (CNG), liquefied natural gas (LNG), biodiesel, Fischer-Tropsch diesel and hydrogen. RFG, methanol, ethanol, LPG, CNG and LNG were assumed to be burned in spark-ignition, direct-injection (SIDI) engines. RFD, Fischer-Tropsch diesel, biodiesel and dimethyl ether were assumed to be burned in compression-ignition, direct-injection (CIDI) engines. Hydrogen, RFG and methanol were assumed to be used in fuel-cell vehicles.
Technical Paper

Full Fuel–Cycle Greenhouse Gas Emission Impacts of Transportation Fuels Produced from Natural Gas

2000-04-26
2000-01-1505
Because of its abundance and because it offers significant energy and environmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this paper, we present greenhouse gas emission impacts of using various natural gas–based transportation fuels. We include eight fuels – compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer–Tropsch diesel, and electricity – for use in five types of motor vehicles – spark–ignition vehicles, compression–ignition vehicles, hybrid electric vehicles, battery–powered electric vehicles, and fuel–cell vehicles. In our evaluation, we separate these fuels and vehicle technologies into near– and long–term options to address technology progress over time.
Technical Paper

Impact of Recycling Automotive Lightweighting Materials on Sustainability

2009-04-20
2009-01-0317
A sustainable activity is one that is economically attractive, environmentally friendly and provides a beneficial service to society in a safe and responsible manner. Having a sustainable operation is a target that today’s industries are striving to attain. The automotive industry and its products are major users of natural resources and a source of greenhouse emissions. In order to reduce its energy consumption and greenhouse emissions the industry is using more lightweighting materials in manufacturing its products. These materials include polymers, composites, aluminum and magnesium. The increased interest in hybrid vehicles will increase the need for new materials such as lithium, cobalt and nickel. At the same time, regulations are calling for recycling more of the obsolete vehicles. Replacing the steel, which is recyclable, with lighter materials will result in a reduction in the recycling rate of vehicles unless the lightweighting materials are recycled.
X