Refine Your Search

Topic

Author

Search Results

Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

A Comparison of Extruded Powder Metal Heating Elements and Metallic Foil Heating Elements

1996-10-01
962081
California Ultra Low Emission Vehicle (ULEV) standards call for a significant reduction in the amount of harmful gases that enter the environment from vehicle exhaust. The Electrically Heated Catalyst (EHC) is a possible solution to reduce emissions. A competitive analysis benchmarking study was completed in order to find an optimum EHC design that will perform to ULEV standards. Four suppliers submitted samples and the EHC designs were rigorously tested for temperature, pressure drop, and emissions performance while being aged at different levels.
Technical Paper

A Comprehensive Hazard Analysis Technique for Safety-Critical Automotive Systems

2001-03-05
2001-01-0674
Hazard analysis plays an important role in the development of safety-critical systems. Hazard analysis techniques have been used in the development of conventional automotive systems. However, as future automotive systems become more sophisticated in functionality, design, and applied technology, the need for a more comprehensive hazard analysis approach has arisen. In this paper, we describe a comprehensive hazard analysis approach for system safety programs. This comprehensive approach involves applying a number of hazard analysis techniques and then integrating their results. This comprehensive approach attempts to overcome the narrower scope of individual techniques while obtaining the benefits of all of them.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

A Model-based Environment for Production Engine Management System (EMS) Development

2001-03-05
2001-01-0554
This paper describes an environment for the development of production Engine Management Systems (EMS). This includes a formal framework and modeling methodology. The environment is based on using Simulink/Stateflow for developing a control system executable specification and a plant model. This allows for simulations of the system to be performed at the engineer's desk, which is identical performance with production software. We provide the details for incorporating production legacy code into the Simulink/Stateflow control system. The system includes a multi-rate, and event driven operating system. This system is developed to facilitate new algorithm development and automated software testing. Based on Simulink/Stateflow this specification will be suitable for use with commercial automatic code generation tools.
Technical Paper

A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction

2000-03-06
2000-01-0888
It is well known that hydrocarbon reduction during a cold start is a major issue in achieving ultra low emissions standards. This paper describes one of the possible approaches for reducing the cold-start hydrocarbon emissions by using a fast “light-off” planar oxygen sensor. The goal of this study was to verify the operation characteristics of Delphi's fast “light-off” planar oxygen sensor's (INTELLEK OSP) operating characteristics and the closed-loop performance for achieving improved hydrocarbon control for stringent emission standards. Tests were conducted in open-loop and closed-loop mode under steady and transient conditions using a 1996 model year 2.4-liter DOHC in-line 4-cylinder engine with a close-coupled catalytic converter. Overall performance of the OSP showed relatively quick reaction time to reach the operating temperature.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

ATD Neck Tension Comparisons for Various Sled Pulses

2002-12-02
2002-01-3324
The structure of the racecar has been the subject of much discussion with regard to crash safety. The stiffness of the structure, the amount of crush and the resulting deceleration were being judged, in some instances, as too stiff or not stiff enough for the driver. Much of this discussion centered on crash incidents for which no deceleration data were available from crash recorders (black boxes). In this paper, crash test dummy (Anthropomorphic Test Device ATD) results are compared for various idealized deceleration-time histories (deceleration pulses) that represent various structural crush characteristics. A crash velocity of 64.4 KPH (40 MPH) against a wall was used to represent a life threatening energy level.
Technical Paper

Achieving Breakthrough on Manufacturing Floor through Project-Based Organization

2009-10-06
2009-36-0333
Many companies around the world have adopted the lean thinking as their strategy to operate, in a global market where changes happen all the time. One foundation for the success of lean manufacturing appliance is the continuous improvement approach which has been considered even on company statements, or it can be also considered as part of the genetic code of any enterprise. However, if in one side the continuous improvement thinking, set people mind to look for opportunities of improvement all the time, on other hand these improvements are incremental and they do not have significant impact on company performance on both short-term and medium-term and sometimes, the activities performed by the employees are not sustainable due to the lack of structure to manage and follow up these activities.
Technical Paper

Air Cleaner Shell Noise Reduction with Finite Element Shape Optimization

1997-05-20
971876
In this paper, finite element shape optimization is used to determine the optimum air cleaner shape and rib design for low shell noise. Shape variables are used to vary the height and location of rib elements, as well as vary the shape of the air cleaner surfaces. The optimization code evaluates each design variation and selects a search direction that will reduce surface velocity. Sound power radiation is calculated for each optimized design using an acoustic code. Large reductions in shell noise were achieved by optimizing the shape of the air cleaner surface and rib design. Optimization of the rib pattern alone yielded a local optimization, as opposed to a global optimization that represented the best possible design.
Technical Paper

All Olefinic Interiors-What Will It Take To Happen?

2000-03-06
2000-01-0632
TPO is getting wider acceptance for automotive applications. An exterior application like a fascia is a very good example. Interiors are still a challenge due to many reasons including overall system cost. For interior applications, “all-olefin” means it mainly consists of three materials: TPO skin, cross-linked olefinic-based foam and PP substrate. The driving force for TPO in Europe is mainly recyclability while in the USA, it is long-term durability. This paper describes the key limitations of the current TPO systems which are: poor grain retention of TPO skin, shrinkage in-consistency of the skin, high cost of priming (or other treatments) and painting of the skin, lower process window of the semi-crystalline TPO material during thermoforming or In-mold lamination / Low pressure molding, high cost of the foam, low tear strength of the foam for deep draw ratio etc.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Analytical Solution for Heat Flow in Cylinder and Its Application in Calculating Converter Skin Temperature

2000-03-06
2000-01-0301
In the catalytic converter, the thermal conductivity of the insulation material (intumescent mat) placed between the ceramic catalyst and the metal shell is strongly dependent on the temperature, resulting in the solving of non-linear heat conduction equations. In this paper, the analytic solution for the steady heat flow in a cylinder with temperature dependent conductivity is given. Using this analytic solution for the mat and including convection and radiation at the converter skin, an analytical expression for calculating converter skin temperature is obtained. This expression can be easily incorporated in a Fortran code to calculate the temperatures.
Technical Paper

Application of Lean Manufacturing to React to Fast Market Growth

2008-10-07
2008-36-0399
Brazilian automotive market has been growing faster than ever. In order to react properly to market increasing demand in terms of volume and diversity, production systems have to be carefully designed. Traditional manufacturing tends to react to demand increase by outsourcing or investing in new equipments or facilities. Lean thinking suggests that by reducing waste along the value stream it is possible to increase flexibility and freed resources to reduce the investment level required to cope customer’s needs. This paper presents two cases of a system redesign based on the lean manufacturing principles to support the demand.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

Barometric Pressure Estimator for Production Engine Control and Diagnostics

1999-03-01
1999-01-0206
A Barometric Pressure Estimator (BPE) algorithm was implemented in a production speed-density Engine Management System (EMS). The BPE is a model-based, easily calibrated algorithm for estimating barometric pressure using a standard set of production sensors, thereby avoiding the need for a barometric pressure sensor. An accurate barometric pressure value is necessary for a variety of engine control functions. By starting with the physics describing the flow through the induction system, an algorithm was developed which is simple to understand and implement. When used in conjunction with the Pneumatic and Thermal State Estimator (PSE and TSE) algorithms [2], the BPE requires only a single additional calibration table, generated with an automated processing routine, directly from measured engine data collected at an arbitrary elevation, in-vehicle or on a dynamometer. The algorithm has been implemented on several different engines.
Technical Paper

Cavity Fill Balancing Technique for Rubber Injection Molding

2015-04-14
2015-01-0715
Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
X