Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A Mean-Value Model for Estimating Exhaust Manifold Pressure in Production Engine Applications

2008-04-14
2008-01-1004
A key quantity for use in engine control is the exhaust manifold pressure. For production applications it is an important component in the calculation of the engine volumetric efficiency, as well as EGR flow and residual fraction. For cost reasons, however, it is preferable to not have to measure the exhaust manifold pressure for production applications. For that reason, it is advantageous to develop a model for estimating the exhaust manifold pressure in production application software that is small, accurate, and simple to calibrate. In this paper, a mean-value model for calculating the exhaust manifold pressure is derived from the compressible flow equation, treating the exhaust system as a fixed-geometry restriction between the exhaust manifold and the outlet of the tailpipe. Validation data from production applications is presented.
Technical Paper

A New, High Torque Brake Design Using Sliding Discs

2003-10-19
2003-01-3309
This paper presents an alternative brake that uses two floating discs, with four rubbing surfaces, to provide a step change improvement in performance over existing products. The paper details the development of this product highlighting the test data, which demonstrates the significant improvements in specific torque, fluid consumption and cooling rates. The design retains conventional materials, existing processes and fits within current package constraints. The sliding discs, which compensate for wear, allow opportunities to simplify the caliper to a fixed design and allow integration with the steering knuckle. Performance, refinement and durability test results indicate the current status of the design as implemented on a small passenger car and an SUV, and show its compatibility with existing vehicle brake control systems. Design options to implement this technology within current and future vehicle systems are also described.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

E-85 Fuel Corrosivity: Effects on Port Fuel Injector Durability Performance

2007-10-29
2007-01-4072
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
Technical Paper

Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit

2004-03-08
2004-01-1586
Modern military ground vehicles are dependent not only on armor and munitions, but also on their electronic equipment. Advances in battlefield sensing, targeting, and communications devices have resulted in military vehicles with a wide array of electrical and electronic loads requiring power. These vehicles are typically designed to supply this power via a main internal combustion engine outfitted with a generator. Batteries are also incorporated to allow power to be supplied for a limited time when the engine is off. It is desirable to use a subset of the battlefield electronics in the vehicle while the engine is off, in a mode called “silent watch.” Operating time in this mode is limited, however, by battery capacity unless an auxiliary power unit (APU) is used or the main engines are restarted.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

NOx-Trap Catalyst Development for Mitsubishi 1.8L GDI™ Application

2003-10-27
2003-01-3078
A new single-brick Ba + alkali metals NOx-Trap catalyst has been developed to replace a two-brick NOx-Trap system containing a downstream three-way catalyst. Major development efforts include: 1) platinum group metals selection for higher HC oxidation with potassium-containing washcoat, 2) alumina and ceria selection, and Rh architecture design for more efficient NOx reduction and 3) NiO to suppress H2S odor. Mitsubishi Motors' 1.8L GDI™ with this Delphi new NOx-Trap catalyst with H2S control achieves J-LEV standard with less cost and lower backpressure compared to the previous model. It is further discovered that incorporation of NiO into the NOx-Trap washcoat is effective for H2S control during sulfur purge but has a negative impact on thermal durability and sulfur resistance. Further study to improve this trade-off has been made and preliminary results of an advanced washcoat design are presented in this paper. Details will be reported in a future publication.
Technical Paper

Non-Intrusive Engine Speed Sensor

2007-04-16
2007-01-0960
In the field of vehicle diagnostics accurate instantaneous engine speed information enables the detection and diagnosis of many engine problems, even subtle ones. Currently, there is a limited choice in the ways of obtaining such information. For example, it is known that one can tap into the crank sensor wiring, or use a separate, intrusive method, such as mounting a sensor in the bell housing to sense the rotation of the ring gear. However, the shortcomings of these approaches are locating and gaining access to the crank sensor connector, the location of which varies from vehicle to vehicle. Thus, authors proposed a novel, robust and manufacturing friendly speed sensor. The concept is based on the Villari effect. The sensor, which is attached to the front end of the engine crankshaft, consists of a coil of magnetostrictive wire supplied with AC current. During engine rotation the magnetostrictive wire become stressed due to centrifugal force.
X