Refine Your Search

Topic

Author

Search Results

Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

A Control System Methodology for Steer by Wire Systems

2004-03-08
2004-01-1106
Steer by Wire systems provide many benefits in terms of functionality, and at the same time present significant challenges too. Chief among them is to make sure that an acceptable steering feel is achieved. Various aspects of this subjective attribute will be defined mathematically. A control system that is architected specifically to meet these challenges is presented. Furthermore, the design is made such that it would be robust to tire and loading variations. Supporting vehicle data and model results are shown as needed.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A Mean-Value Model for Estimating Exhaust Manifold Pressure in Production Engine Applications

2008-04-14
2008-01-1004
A key quantity for use in engine control is the exhaust manifold pressure. For production applications it is an important component in the calculation of the engine volumetric efficiency, as well as EGR flow and residual fraction. For cost reasons, however, it is preferable to not have to measure the exhaust manifold pressure for production applications. For that reason, it is advantageous to develop a model for estimating the exhaust manifold pressure in production application software that is small, accurate, and simple to calibrate. In this paper, a mean-value model for calculating the exhaust manifold pressure is derived from the compressible flow equation, treating the exhaust system as a fixed-geometry restriction between the exhaust manifold and the outlet of the tailpipe. Validation data from production applications is presented.
Technical Paper

A Model Based Approach for Generating Pre-Calibration Data for Two-Wheelers

2017-11-05
2017-32-0038
Today, 99% of the two wheelers in India operate with carburetor based fuel delivery system. But with implementation of Bharath Stage VI emission norms, compliance to emission limits along with monitoring of components in the system that contributes towards tail pipe emissions would be challenging. With the introduction of the OBD II (On-Board Diagnostics) and emission durability, mass migration to electronically controlled fuel delivery system is very much expected. The new emission norms also call for precise metering of the injected fuel and therefore demands extended calibration effort. The calibration of engine management system starts with the generation of pre-calibration dataset capable of operating the engine at all operating points followed by base calibration of the main parameters such as air charge estimation, fuel injection quantity, injection timing and ignition angles relative to the piston position.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

A Statistical Approach for Real-Time Prognosis of Safety-Critical Vehicle Systems

2007-04-16
2007-01-1497
The paper describes the development of a vehicle stability indicator based on the correlation between various current vehicle chassis sensors such as hand wheel angle, yaw rate and lateral acceleration. In general, there is a correlation between various pairs of sensor signals when the vehicle operation is linear and stable and a lack of correlation when the vehicle is becoming unstable or operating in a nonlinear region. The paper outlines one potential embodiment of the technology that makes use of the Mahalanobis distance metric to assess the degree of correlation among the sensor signals. With this approach a single scalar metric provides an accurate indication of vehicle stability.
Journal Article

A Study of Effects of Brake Contact Interfaces on Brake Squeal

2009-05-19
2009-01-2100
Brake squeal is caused by the friction-induced vibration at the rotor/pad interfaces (primary contact interfaces) in a disc brake system. While there have been numerous research work evaluating the influence of primary contact interfaces on brake squeal, few studies can be found on the effect of the secondary contact interfaces, i.e., outer pad/caliper fingers, inner pad/pistons and pad/abutment, which can also significantly affect brake squeal based on our various dynamometer and vehicle tests. It is therefore the objective of this paper to investigate both the primary and the secondary contact interfaces and their influence on brake squeal. Simplified analytical models are created to gain insight into the stability of the brake system under low and high brake pressure; non-linear FEA analysis is employed for parametric study and countermeasure development; dynamometer and vehicle tests are used for verification.
Technical Paper

A Study on Low Frequency Drum Brake Squeal

2004-10-10
2004-01-2787
Low frequency drum brake squeal is often very intense and can cause high levels of customer complaints. During a noise event, vehicle framework and suspension components are excited by the brake system and result in a violent event that can be heard and felt during a brake application. This paper illustrates the experimental and analytical studies on a low frequency drum brake squeal problem that caused high warranty cost. First the environmental condition was identified and noise was reproduced. Vehicle tests were performed and operating deflection shapes were acquired. The sensitivity of the lining material to different environmental conditions was investigated. With the use of complex eigenvalue method, models were constructed to obtain further understanding of the phenomena. Finally, the squeal mechanism of a drum brake system is discussed and various solution techniques for low frequency drum brake noise are evaluated.
Technical Paper

A System Approach to the Drag Performance of Disc Brake Caliper

2003-10-19
2003-01-3300
Among the performance concerns in brake design, drag and fluid displacement are getting more attention in the requirement definition. High drag not only affects fuel efficiency and lining life, it is also a contributing factor to rotor thickness variation and brake pulsation. In this paper, a system approach to drag performance of a disc brake caliper is presented. A one-dimensional simulation model, which considers all the significant factors, including lining stiffness and hysteresis, housing stiffness, seal/groove characteristic, and stick-slide behavior between the seal and piston, is developed to capture the interactive impact of each parameter to caliper drag performance. The system model is validated with experimental measurements for caliper fluid displacement and piston retraction. A parameter study is then conducted to investigate the component interactive impact to the drag performance.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

An Adaptable Software Safety Process for Automotive Safety-Critical Systems

2004-03-08
2004-01-1666
In this paper, we review existing software safety standards, guidelines, and other software safety documents. Common software safety elements from these documents are identified. We then describe an adaptable software safety process for automotive safety-critical systems based on these common elements. The process specifies high-level requirements and recommended methods for satisfying the requirements. In addition, we describe how the proposed process may be integrated into a proposed system safety process, and how it may be integrated with an existing software development process.
Technical Paper

Anti-Lock Braking Performance and Hydraulic Brake Pressure Estimation

2005-04-11
2005-01-1061
Anti-Lock Brake Systems use hydraulic valves to control brake pressure and ultimately, wheel slip. The difference in pressure across these hydraulic valves affects their performance. The control of these valves can be improved if the pressure difference is known and the valve control altered accordingly. In practice, the delta- pressure is estimated. Estimating the wheel brake pressure introduces an error into the control structure of the system, i.e. the difference between the actual wheel brake pressure and the estimated wheel brake pressure. The effect of this error was investigated at the vehicle level via simulation, using stopping distance and vehicle yaw rate as evaluation criteria. Even with large errors in the brake pressure estimate, it was found that the vehicle performance was largely unaffected.
Technical Paper

Bosch Motronic MED9.6.1 EMS Applied on a 3.6L DOHC 4V V6 Direct Injection Engine

2008-04-14
2008-01-0133
Robert Bosch LLC North America has developed and calibrated an engine management system for gasoline direct injection engines. This system controls the General Motors 3.6L DOHC 4 valve V6 engine which features direct injection, variable valve timing and electronic throttle control. This engine powers the 2008 model year Cadillac CTS and STS. It is the first GM production direct injection V6 engine in North America. It produces 304 HP at 6500 rpm and 370 Nm torque at 5200 rpm. Emissions meet LEV2 Bin5 standards. Interesting features include wall guided direct fuel injection, homogeneous split injection for fast catalyst light off and one of the industry's first isolated injection systems for noise reduction. This paper provides an overview of the features of this system and focuses on the calibration development.
Technical Paper

Brake Rotor Modal Frequencies: Measurement and Control

2010-10-10
2010-01-1688
As part of the development of a new SAE Recommended Practice for brake rotor modal frequencies measurement and control, the SAE Brake NVH Standards Committee developed detailed recommendations for such measurement, data reporting and use in quality control. This paper addresses the need for formalizing measurement techniques of rotor modal frequencies and documenting the proper set up and measurement parameters. Additionally, a rotor mode classification system is proposed so that important rotor modes may be tracked. Statistical control of modal frequencies is presented and practical limits are defined
Technical Paper

Brake Squeal Analysis Incorporating Contact Conditions and Other Nonlinear Effects

2003-10-19
2003-01-3343
A squeal analysis on a front disc brake is presented here utilizing the new complex eigenvalue capability in ABAQUS/Standard. As opposed to the direct matrix input approach that requires users to tailor the friction coupling matrix, this method uses nonlinear static analyses to calculate the friction coupling prior to the complex eigenvalue extraction. As a result, the effect of non-uniform contact pressure and other nonlinear effects are incorporated. Friction damping is used to reduce over-predictions and the velocity dependent friction coefficient is defined to contribute negative damping. Complex eigenvalue predictions of the example cases show very good correlation with test data for a wide range of frequencies. Finally, the participation of rotor tangential modes is also discussed.
Technical Paper

Braking Systems Creep Groan Noise: Detection and Evaluation

2009-05-19
2009-01-2103
“Creep groan” is a braking systems noise that is observed when a vehicle is starting to move from a stopped condition with brake pressure applied. Motion takes place when brake pressure is reduced while a motive force, such as an idling engine through an automatic transmission, or gravity due to the vehicle being on a slope, is present. The vibration causing the sound is commonly thought to result from friction force variation in stick-slip mode. Detection and evaluation of “creep groan” noise has been a challenge for NVH test groups. First, this sound typically is not purely tonal like the more common brake squeal, although ultimately it may produce a tonal subjective impression. In this work the authors study different methods that may be applied to “creep groan” detection and evaluation.
X