Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

10 Year-Old Hybrid III ATD Positions in Panic Brake Conditions

2004-03-08
2004-01-0848
Panic braking can cause an “in-position” unbelted occupant to become “out-of-position.” Although the braking event dynamics and initial positioning of the occupant affect the final position at time of impact (if any), general trends are assumed. FMVSS208 now includes “out-of-position” (OOP) performance for Anthropomorphic Test Devices (ATDs) sizes twelve month to six year-old. Airbag suppression technologies currently address that range of OOP occupants. The objective of this study is to develop an approach to defining OOP test positions for the recently released 10 year old ATD and to assist restraint engineers in developing strategies to help reduce the risk of inflation induced injury to the larger out-of-position child. A series of panic brake tests was conducted with the 10 year-old Hybrid III to study panic braking kinematics. Antilock braking (ABS) generated the desired constant deceleration from high initial speeds (40 to 60mph) in three types of vehicles.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2005 Ford GT Powertrain - Supercharged Supercar

2004-03-08
2004-01-1252
The Ford GT powertrain (see Figure 1) is an integrated system developed to preserve the heritage of the LeMans winning car of the past. A team of co-located engineers set out to establish a system that could achieve this result for today's supercar. Multiple variations of engines, transaxles, cooling systems, component locations and innovations were analyzed to meet the project objectives. This paper covers the results and achievements of that team.
Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

3D-Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Complex Chemistry

2004-03-08
2004-01-0106
A progress variable approach for the 3D-CFD simulation of DI-Diesel combustion is introduced. Considering the Diesel-typical combustion phases of auto-ignition, premixed and diffusion combustion, for each phase, a limited number of characteristic progress variables is defined. By spatial-temporal balancing of these progress variables, the combustion process is described. Embarking on this concept, it is possible to simulate the reaction processes with detailed chemistry schemes. The combustion model is coupled with a mesh-independent Eulerian-spray model in combination with orifice resolving meshes. The comparison between experiment and simulation for various Diesel engines shows good agreement for pressure traces, heat releases and flame structures.
Technical Paper

62TE 6-Speed Transaxle for Chrysler Group

2007-04-16
2007-01-1097
A new six-speed transaxle has been introduced by the Chrysler Group of DaimlerChrysler AG. Along with the six forward ratios in the normal upshift sequence, this transaxle features a seventh forward ratio used primarily in a specific downshift sequence. A significant technical challenge in this design was the control of so-called double-swap shifts, the exchange of two shift elements for two other shift elements. In the case at hand, one of the elements is a freewheel. A unique solution is discussed for successful control of double-swap shifts. The new design replaces a four-speed transaxle but makes use of a large percentage of parts and processes from the four-speed design. This approach enabled the new transaxle to reach production in three years from concept. The new transaxle, referred to as the 62TE, has substantially improved performance and passing maneuvers coupled with a new 4.0L high output engine for which the 62TE was developed.
Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

A Case Study on Airborne Road Noise Reduction of a Passenger Vehicle

2003-05-05
2003-01-1407
This paper presents a case study on reducing road noise of a passenger vehicle. SEA, insertion loss and sound intensity measurements were the tools used in the study. A SEA model was constructed to predict the primary paths (panels or area) contributing to the overall interior sound field. Insertion loss measurements were used to verify the primary contributing paths identified using SEA. To provide further details of the primary paths, intensity maps of identified panels were measured allowing detailed reconstruction of the contributory panels. The SEA model, insertion loss, and intensity maps aided in providing possible design fixes that will effectively reduce road noise. Finally, comparisons of predicted results versus actual results at both a subsystem and a full vehicle level are included in this paper.
Technical Paper

A Case Study on Golf Car Powertrain NVH Sources and Mitigation Methods

2019-06-05
2019-01-1478
The golf market has remained flat in North America. Whereas, it has grown worldwide. A trend is seen where the number of young adults and adults over the age of 65 years involved with the game has increased. The demographics in golf showing the most growth also have high standards for the operation of the golf car. They have transcended their expectations to align with some of the qualities expected of automobiles. There is a shift in consumer expectations. Moreover, the market competition has also increased. This drives the OEMs to deliver refined golf cars with NVH being a key aspect in development. This paper showcases a recent study to improve the powertrain N&V performance of an internal combustion engine golf car. Primarily, a test-based approach is followed. Chassis rolls and on road testing are performed for benchmarking and target setting. System and component tests are performed to root cause issues.
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers

2003-05-05
2003-01-1419
This paper presents a study and comparison of two methods commonly used to treat unwanted vibration in vehicles. Laboratory work was done to measure and compare the effectiveness of common designs for practical tuned mass dampers (TMDs) and particle dampers under a wide range of conditions. The relative strength and weaknesses of the two approaches are compared in their abilities to treat vibration in a system due to resonant modes and forced response. The effectiveness of each method is investigated as a function of the weight of the treatment, amplitude and temperature effects.
Technical Paper

A Computer Model Based Sensitivity Analysis of Parameters of an Automotive Air Conditioning System

2004-03-08
2004-01-1564
The objective of this work is to perform a computer model based sensitivity analysis of parameters of an automotive air conditioning system to identify the critical parameters. Design of Experiment (DOE) and Analysis of Variance (ANOVA) techniques have been used to identify the critical parameters and their relative effects on the air conditioning system performance. The sensitivity analysis has been verified by running similar tests on an air conditioning system test stand (AC Test Stand).
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
X