Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fast and Fully Automated Cartesian Meshing Solution for Dirty CAD Geometries

2008-12-02
2008-01-2998
The most time-consuming step in an external aerodynamics or underhood CFD process is that of generating a usable mesh from CAD data. Conventional mesh generators require a water-tight surface mesh before they can generate the volume mesh. Typical CAD surface data available for mesh generation is far from satisfactory for volume mesh creation: no node-to-node matching between mating parts, minute gaps, overlapping surfaces, overlapping parts, etc. To clean up this kind of data to a level that can be used for volume mesh creation requires a lot of manual work that could take a couple of weeks or more to accomplish. This paper presents a fast and fully automated, Cartesian cell dominated projected mesh generation algorithm used in CFD-VisCART that eliminates the need for CAD data cleaning, thus shaving off weeks worth of time off the design cycle.
Journal Article

A Pass-By Noise Prediction Method Based on Source-Path-Receiver Approach Combining Simulation and Test Data

2019-01-09
2019-26-0188
Optimizing noise control treatments in the early design phase is crucial to meet new strict regulations for exterior vehicle noise. Contribution analysis of the different sources to the exterior acoustic performance plays an important role in prioritizing design changes. A method to predict Pass-by noise performance of a car, based on source-path-receiver approach, combining data coming from simulation and experimental campaigns, is presented along with its validation. With this method the effect of trim and sound package on exterior noise can be predicted and optimized.
Journal Article

A Vehicle Pass-by Noise Prediction Method Using Ray Tracing with Diffraction to Extend Simulation Capabilities to High Frequencies

2021-09-22
2021-26-0264
Predicting Vehicle Pass-by noise using simulation enables efficient development of adequate countermeasures to meet legislative targets while reducing development time and the number of physical trial-and-error prototypes and tests. It has already been shown that deterministic simulation methods such as the Boundary Element Method (BEM), which may also include directivity of sources, can support the trim package optimization process for Pass-by noise, especially for low to mid frequencies. At higher frequencies, the Ray Tracing technique, can represent an efficient alternate providing options to trade off speed versus accuracy compared to wave-based technique such as FE/BEM. This paper presents a Ray Tracing approach with high order diffraction effect. Moreover, source directivity and sound package effect are accounted for.
Technical Paper

AI Enhanced Methods for Virtual Prediction of Short Circuit in Full Vehicle Crash Scenarios

2020-04-14
2020-01-0950
A new artificial intelligence (model order reduction) / finite element coupled approach will be presented for the risk assessment of battery fire during a car crash event. This approach combines standard crash finite element for the main car body with a reduced order model for the battery. Simulation is today used by automotive engineering teams to design lightweight vehicle bodies fulfilling vehicle safety regulations. Legislation is rapidly evolving to accommodate the growing electrical vehicle market share and is considering additional battery safety requirements. The focus is on avoiding internal short circuit due to internal damage within a cell which may result in a fire hazard. Assessing short circuit risk in CAE at the vehicle level is complex as there involves phenomena at different scales. The vehicle deforms on a macroscale level during the impact event.
Technical Paper

Aero-Vibro-Acoustic Simulation Methodologies for Vehicle Wind Noise Reduction

2019-01-09
2019-26-0202
Wind noise is a major contributor to vehicle noise and a very common consumer complaint for overall vehicle quality [1]. The reduction of wind noise is becoming even more important as powertrain noise is reduced or eliminated (by conversion to hybrid and electric vehicles) and as the importance of quiet interior environment for hands-free device use and voice activation systems becomes more pronounced. In contrast to other noise sources such as tires, engine, intake, exhaust or other component noise whose acoustic loads may be measured in a direct and standardized way with the proper equipment, wind noise is very difficult to predict because the acoustic part of wind noise is a small component of overall fluctuating pressures. It is very challenging to either directly measure or to simulate the acoustic component of fluctuating exterior pressures using CFD (Computational Fluid Dynamics) without a great deal of specialized experience in this area.
Journal Article

Application of the Hybrid FE-SEA Method to Predict Sound Transmission Through Complex Sealing Systems

2011-05-17
2011-01-1708
Currently, the use of numerical and analytical tools during a vehicle development is extensive in the automotive industry. This assures that the required performance levels can be achieved from the early stages of development. However, there are some aspects of the vibro-acoustic performance of a vehicle that are rarely assessed through numerical or analytical analysis. An example is the modeling of sound transmission through vehicle sealing systems. In this case, most of the investigations have been done experimentally, and the analytical models available are not sufficiently accurate. In this paper, the modeling of the sound transmission through a vehicle door seal is presented. The study is an extension of a previous work in which the applicability of the Hybrid FE-SEA method was demonstrated for predicting the TL of sealing elements.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
Technical Paper

Combining Modeling Methods to Accurately Predict Wind Noise Contribution

2015-06-15
2015-01-2326
Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities. The main physical mechanisms related to noise generation within a turbulent flow and the vibro-acoustic transmission through the vehicle greenhouse is nowadays better understood. Several simulation methods such as CFD, FEM, BEM, FE/SEA Coupled and SEA can be coupled together to represent the physical phenomena involved. The main objective being to properly represent the convective and acoustic component within the turbulent flow to ensure proper computation of the wind noise contribution to the interior SPL of a vehicle.
Technical Paper

Crash and Statics Simulation of Short Fiber Reinforced Polymers in ESI Virtual Performance Solution Taking into Account Manufacturing Effects

2019-04-02
2019-01-0715
The present contribution will present how local micromechanical properties can be used in an industrial way to assess the crash performance of parts made of short fiber reinforced polymers. To this end, local information about the material structure, predicted by a Manufacturing Process Simulation (MPS), is transferred and mapped automatically on the performance composite part model. The homogenization and mapping techniques will be presented for elastic and nonlinear application fields. Short fiber reinforced injected thermoplastics are widely used in the automotive industry in mass production. Reliable prediction of the performance of short fiber reinforced thermoplastics by simulation for statics and crash simulation can be achieved only by accounting for the full manufacturing process coming from process simulation software.
Technical Paper

Harmonizing Safety Regulations and Perception: A Simulation Methodology for AVAS System Design

2024-06-12
2024-01-2915
The development of an effective Acoustic Vehicle Alert System (AVAS) is not solely about adhering to safety regulations; it also involves crafting an auditory experience that aligns with the expectations of vulnerable road users. To achieve this, a deep understanding of the acoustic transfer function is essential, as it defines the relationship between the sound emitter (the speaker inside the vehicle) and the receiver (the vulnerable road user). Maintaining the constancy of this acoustic transfer function is paramount, as it ensures that the sound emitted by the vehicle aligns with the intended safety cues and brand identity that is defined by the car manufacturer. In this research paper, three distinct methodologies for calculating the acoustic transfer function are presented: the classical Boundary Element method, the H-Matrix BEM accelerated method, and the Ray tracing method.
Technical Paper

Improved Simulation of Local Necks in Quick Plastic Forming

2008-04-14
2008-01-1441
Two alternative finite element formulations are described which consider the influence of normal stress components on sheet deformations in Quick Plastic Forming [1]. The new formulations, single field bricks and multi-field shells, were implemented in the forming simulation program PAM-STAMP [2] using a non-linear viscoelastic constitutive relation [3,4]. Simulations of two industrial components indicate that both new elements simulate local necking more accurately than the standard shells which ignore normal stresses. The multi-field shells require slightly more calculation time than the standard shells and significantly less than equivalent brick models.
Technical Paper

Incorporating the FMVSS 201U Laboratory Experience in Simulation Using IHIT

2010-04-12
2010-01-1018
FMVSS 201U, interior head impact performance is required for each new vehicle program. In the laboratory, testing to this requirement includes laying out the target locations, defining additional robustness target points based on targeting variation, positioning the Free Motion Headform (FMH), impacting each location with the headform and measuring HIC values. The tests may involve some conservative strategies and robustness studies to protect for the worst-case scenarios, where an impact might produce the highest HIC(d) within variations of impact conditions. In order to automate the best practices and procedures for both laboratory and CAE, a process automation environment was used to develop the Interior Head Impact Toolkit (IHIT, pronounced as i-hit). The IHIT software addresses several key testing processes and is grouped into four modules.
Technical Paper

Modeling process and validation of Hybrid FE-SEA method to structure-borne noise paths in a trimmed automotive vehicle

2008-03-30
2008-36-0574
The Finite Element Method (FEM) and the Statistical Energy Analysis (SEA) are standard methods in the automotive industry for the prediction of vibrational and acoustical response of vehicles. However, both methods are not capable of handling the so called “mid frequency problem”, where both short and long wavelength components are present in the same system. A Hybrid method has been recently proposed that rigorously couples SEA and FEM. In this work, the Hybrid FE-SEA method is used to predict interior noise levels in a trimmed full vehicle due to broadband structure-borne excitation from 200Hz to 1000Hz. The process includes the partitioning of the full vehicle into stiff components described with FE and modally dense components described with SEA. It is also demonstrated how detailed local FE models can be used to improve SEA descriptions of car panels and couplings.
Technical Paper

Modelling and Crush Simulation of a Generic Battery Module for Electric Vehicles

2021-04-06
2021-01-0340
Electric vehicles are becoming a rapid growing part of the automotive scene. Batteries are considered as one of the most important and challenging components in the development of electric vehicles. The mechanical performance of the battery module is of great interest and the crashworthiness analysis of the battery module is always a critical design aspect. In crash and other severe events, the battery module is subject to impact loads from different directions. The module is designed with a capability to be deformed and collapsed in a controlled manner to mitigate safety critical damage to battery cells inside the module. In the design process, it is necessary to consider the distribution of the impact loads during the crash to minimize the local damage. In this paper, a finite element model is developed and used as an efficient simulation tool to analyze the dynamic behavior of a generic battery module upon crushing and shocking.
Technical Paper

Multi-Domain Meshes for Automobile Underhood Applications

2009-04-20
2009-01-1149
A fast and fully automated, Cartesian cell dominated projected mesh generation tool, that does not require a water-tight surface mesh and can handle dirty geometry without the need for CAD clean-up, is ideal for generating the fluid (air) domain mesh in the underhood region of an automobile. For simulating radiation and conduction though, it may be essential to model the solid material of the underhood components as well. Thus a multi-domain mesh is required. This paper presents an approach in which a projected mesh generation tool (CFD-VisCART) creates the fluid mesh and communicates with a conventional grid generator (CFD-GEOM), which in turn creates the solid component mesh. This approach thus tries to combine the benefits of the two vastly varying grid generation algorithms and allows the user to achieve a very short turnaround time for the underhood mesh.
Technical Paper

Numerical Aeroacoustics Prediction of a Ducted Diaphragm Chaining RANS-LES and DES Results to a Parallel Boundary Element Method

2016-06-15
2016-01-1810
In the framework of noise reduction of HVAC (Heating, Ventilating and Air Conditioning) systems designed for cars, the present study deals with the numerical prediction of aeroacoustics phenomena encountered inside such devices for industrial purposes, i.e. with a reasonable CPU time. It is then proposed in this paper to assess the validity of the chaining, via Lighthill-Curle analogy, of a DES (Detached Eddy Simulation) resulting from the CFD code OpenFOAM (ESI Group) versus a RANS-LES (Large Eddy Simulation) and a BEM calculation resulting from the Vibro/Aeroacoustics software VA One (ESI Group) on an academic case of air passing through a rectangular diaphragm at a low Mach number. The BEM code being parallelized, the performances of DMP (Distributed Memory Processing) solution will also be assessed.
Technical Paper

Prediction of Minimum Sound Emission Requirements of an Electric/Hybrid Vehicle

2023-05-08
2023-01-1099
Electric and Hybrid vehicles have standards for emitting enough noise to reduce danger and risk to pedestrians when operating at low speeds. Simulation can help to support development and deployment of these systems while avoiding a time-consuming, test-based approach to design these AVAS (Acoustic Vehicle Alerting System) warning systems. Traditionally, deterministic simulation methods such as Finite Element Method (FEM) and Boundary Element Method (BEM) are used at low frequencies and statistical, energy-based methods such as Statistical Energy Analysis (SEA) are used at high frequencies. The deterministic methods are accurate, but computationally inefficient, particularly when the frequency increases. SEA is computationally efficient but does not capture well the physics of exterior acoustic propagation. An alternative method commonly used in room acoustics, based on geometrical or ray acoustics, is “Ray Tracing” and can be used for sound field prediction.
Technical Paper

Simulation Based Solutions for Industrial Manufacture of Large Infusion Composite Parts

2014-04-01
2014-01-0965
Today, LRI is a proven manufacturing technology for both small and large scale structures (e.g. sailboats) where, in most cases, experience and limited prototype experimentation is sufficient to get a satisfactory design. However, large scale aerospace (and other) structures require reproducible, high quality, defect free parts, with excellent mechanical performance. This requires precise control and knowledge of the preforming (draping and manufacture of the composite fabric preforms), their assembly and the resin infusion. The INFUCOMP project is a multi-disciplinary research project to develop necessary Computer Aided Engineering (CAE) tools for all stages of the LRI manufacturing process. An ambitious set of developments have been undertaken that build on existing capabilities of leading drape and infusion simulation codes available today. Currently the codes are only accurate for simple drape problems and infusion analysis of RTM parts using matched metal molds.
Technical Paper

Simulation of Advanced Folded Airbags with VPS‑PAMCRASH/FPM: Development and Validation of Turbulent Flow Numerical Simulation Techniques Applied to Curtain Bag Deployments

2013-04-08
2013-01-1158
Models to represent in position situations based upon uniform pressure assumptions are well established and have been used extensively in the automotive industry for more than 15 years. More recently, in the beginning of the year 2000, advanced simulation techniques with Fluid Structure Interaction (FSI) approaches, such as VPS-PAMCRASH/FPM (Finite Point Method) have been introduced in the development of airbag restraint systems. Their main fields of application are Out Of Position (OOP) situations, where the occupant is close to the airbag casing. For these load cases the deployment kinematics of the airbag and local associated pressures play a major role and require modeling precisely the gas flow. Similarly these techniques are used for side airbags like curtain airbags or knee bags where the deployment kinematics are highly dependent upon local pressures on the membrane of the airbag. The turbulence and viscous flow effects cannot be neglected for curtain bags.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
X