Refine Your Search

Topic

Author

Search Results

Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

A Reduced Order Model for Prediction of the Noise Radiated by a High-Speed EV Transmission using Statistical Energy Analysis

2023-05-08
2023-01-1113
The transmission is an integral part of the driveline in an automotive vehicle. Global vehicle pass-by noise regulations are becoming more stringent and transmissions are expected to be very quiet. Typically for an automotive system, engine is the most dominant noise source and transmissions have been considered a secondary noise source but as the trend is shifting towards more electric vehicles where engine noise is absent and overall vehicle is becoming quieter, the transmission can be more of a significant noise contributor. Gear whine is the major concern for sound radiation from the transmission. The gear whine simulation and acoustic radiation analysis of the transmission using traditional methods (FEM and BEM) is a crucial but very time-consuming part of the product development cycle. On top of that, electric vehicle transmissions operate at higher RPM which in turn increases the excitation frequency arising from the gear whine phenomenon.
Journal Article

Active Masking of Tonal Noise using Motor-Based Acoustic Generator to Improve EV Sound Quality

2021-08-31
2021-01-1021
Electric motor whine is one of the main noise sources of electric vehicles (EVs). Without engine masking noise, high pitch tonal noise from electric motor can be highly annoying and raise sound quality issues for electrified propulsion systems. This paper describes a patented new technology that controls electric motor to actively mask annoying high-pitch tonal noise by (i) controlling electric motor to create complementary low order tones to enrich sound complexity and distract high pitch tones; (ii) controlling motor to generate random dithering noise to raise masking noise floor and reduce tone-to-noise ratio around tonal targets; (iii) combining complementary injection at low frequency and dithering at high frequency for enhanced masking. This new technology enables controlling masking noise level, frequency, order and bandwidth as a function of motor torque and speed for most effective masking.
Technical Paper

An Efficient Modeling Approach for Mid-frequency Trim Effects

2011-05-17
2011-01-1719
In traditional FE based structure-borne noise analysis, interior trims are normally modeled as lump masses in the FE structure model and acoustic specific impedance of the trim is assigned to the FE acoustics model when necessary. This simplification has proven to be effective and sufficient for low frequency analysis. However, as the frequency goes into the mid-frequency range, the elastic behavior of the trim may impose some effects on the structural and acoustic responses. The approach described in this paper is based on the structural FE and acoustic SEA coupling analysis developed by ESI, aiming to improve the modeling efficiency for a possible quick turnaround in virtual assessments.
Technical Paper

Analytical Method to Predict Floor Console Lid Latch Rattle Acoustic Noise

2023-04-11
2023-01-0873
This paper is a continuation of previously published technical paper SAE 2022-01-0314. The preceding work described an analytical methodology to predict the vehicle interior trim squeak and rattle issues upfront in the design cycle using a “relative displacement” or “contact force” metric; the methodology was implemented on the center floor console armrest latch using a linear finite element model. The work is logically extended to predict the squeak and rattle issues quantitatively using now an “acoustic noise” metric, this enables a direct comparison with the physical test results and helps to further refine the design best practices. This approach combines Finite Element Method (FEM) and Boundary Element Method (BEM) to estimate structural vibration response and acoustic sound pressure respectively.
Technical Paper

Application of Spectral-Based Substructuring Approach to Analyze the Dynamic Interactions of Powertrain Structures

2003-05-05
2003-01-1731
A spectral-based substructuring approach applying linear frequency response functions (FRF) is proposed for improving the accuracy of simulating the dynamics of coupled systems. The method also applies a least square singular value decomposition (SVD) scheme to overcome the inherent computational deficiency in the basic substructuring formulation. The computational problem is caused by the magnification of measurement errors during any one of the matrix inversion calculations required for this method. The primary objective of applying this approach is to examine the possibility of analyzing higher frequency response that is normally not possible using conventional modeling technique such as the direct finite and boundary element, and lumped parameter techniques. In this study, additional concepts are also evaluated to quantify the limitations and range of applicability of the proposed substructuring approach for simulating the vibration response of complex powertrain structures.
Technical Paper

Damping Mass Effects on Panel Sound Transmission Loss

2011-05-17
2011-01-1633
The primary function of damping treatment on a vibrating panel in a vehicle is to reduce vibration levels or radiated sound power by the dissipation of energy. However, in automotive applications the mass effects of damping materials should not be ignored, especially with regard to airborne noise performance. In this paper, a Finite Element-Statistical Energy Analysis (FE-SEA) hybrid analysis is used to evaluate the mass effects of applied damping materials on Sound Transmission Loss (STL). The analysis takes into consideration effects on both the elastic properties and modal mass of the panel. It is shown that while uniformly distributing the mass of the damping material over the panel generally over-estimate the mass effects on STL, an area weighting approach underestimates the effects. Results are confirmed by laboratory testing. A nomogram is generated to show the total effect of the mass of the damping material on STL.
Journal Article

Dual Transfer Function Approach to Analyze Low Frequency Brake Noise without Comprehending Friction Behavior in Advance

2022-09-19
2022-01-1176
Analyzing low frequency brake noise (< 300Hz) has been challenging due to the difficulty associated with calculating dynamic friction behavior and its multiple structure-borne noise transfer paths. In theory, it is possible to simulate sound pressure level inside the cabin by calculating a transfer function between friction excitation, which is on the interface between rotor and pads, and cabin acoustic response, and by multiplying dynamic friction force at the rotor-pad interface to that transfer function. However, calculating the dynamic friction forces when brake noise occurs has been one of the most challenging research topics in the brake community. This paper describes a novel concept to simulate sound pressure level inside the cabin without knowing the dynamic friction forces at the rotor-pad interface in advance.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

Hydraulically Damped Rubber Body Mounts with High Lateral Rate for Improved Vehicle Noise, Vibration and Ride Qualities

2013-05-13
2013-01-1906
In today's competitive market, noise and vibration are among the most important parameters that impact the success of a vehicle. In body-on-frame construction vehicles, elastomeric body mounts play a major role in isolating the passenger compartment from road noise, harshness, shake, and other vibrations in the chassis as well as improving ride quality across a wide frequency range. This paper describes the work carried out to design a fluid filled mount with high lateral stiffness that can alter the perceived Noise, Vibration and Harshness (NVH) performance of current production body-on-frame trucks. It was found that the quietness and ride qualities can be significantly improved by positioning the glycol-filled mounts at the anti-node of the frame first vertical bending mode; under the C-pillar intersection with the frame. The performance of mounts in this area is known to be critical to ride quality.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

2017-06-05
2017-01-1792
Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Technical Paper

Liftgate Structure Optimization to Minimize Contribution to Low Frequency Interior Noise

2020-04-14
2020-01-1264
This paper presents the design development of a SUV liftgate with the intention of minimizing low frequency noise. Structure topology optimization techniques were applied both to liftgate and body FEA models to reduce radiated power from the liftgate inner surface. Topology results are interpreted into structural changes to the original liftgate and body design. Favorable results of equivalent radiated power (ERP) performance with reduced cost and mass is shown compared to baseline liftgate and baseline with tuned vibration absorber (TVA). This simulation includes finite element modeling of coupled fluid/structure interaction between the interior air cavity volume and liftgate structure. In addition to ERP minimization, multi-model optimization (MMO) was used on separate models simultaneously to preserve liftgate structural performance for several customer usage load cases.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Modified Experimental Approach to Investigate Coefficient of Friction and Wear under Lubricated Fretting Condition by Utilizing SRV Test Machine

2018-04-03
2018-01-0835
Fretting is an important phenomenon that happens in many mechanical parts. It is the main reason in deadly failures in automobiles, airliners, and turbine engines. The damage is noticed between two surfaces clamped together by bolts or rivets that are nominally at rest, but have a small amplitude oscillation because of vibration or local cyclic loading. Fretting damage can be divided into two types. The first type is the fretting fatigue damage where a crack would initiate and propagate at specific location at the interface of the mating surfaces. Cracks usually initiate in the material with lower strength because of the local cyclic loading conditions which eventually lead to full failure. The second type is the fretting wear damage because of external vibration. Researchers have investigated this phenomenon by theoretical modeling and experimental approaches. Although a lot of research has been done on fretting damage, some of the parameters have not been well studied.
Technical Paper

Motor Level Torque Ripple Requirement Development for Vehicle Seat Track Acceleration

2023-04-11
2023-01-0565
Torque ripple from electric motor can excite a system resonance perceived as vibration at the vehicle seat track. The CAE simulation procedure was applied to analyze the seat track acceleration excited by electric motor torque ripple. In this study, the transfer function between the electric motor torque and vehicle level seat track acceleration was developed, and it incorporates the control capability and vehicle sensitivity subfunctions. The motor level torque ripple requirement was developed, which can support motor design in early vehicle development stage based on vehicle level criteria. The analysis results obtained for motor level torque ripple requirement shows good agreement with the experimental validation using vehicle test data. The variation study on control capability and vehicle sensitivity was investigated, and the results can help to identify the solution to improve vehicle torque ripple response.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Technical Paper

NVH Design, Analysis and Optimization of Chevrolet Bolt Battery Electric Vehicle

2018-04-03
2018-01-0994
A multi-stage system level method is used to design, optimize and enhance electric motor NVH performance of General Motors’ Chevrolet Bolt battery electric vehicle (BEV). First, the rotor EM (electromagnetic) design optimizes magnet placement between adjacent poles asymmetrically, along with a pair of small slots stamped near the rotor outer surface to lower torque ripple and radial force. The size and placement of stator slot openings under each pole are optimized to lower torque ripple and radial force. Next, motor stator level FE (Finite Element) analysis and modal test correlation are performed to benchmark the orthotropic stator material properties and accurately predict modal results within 7% error below 2 kHz. Furthermore, tangential and radial EM forces are applied on motor-in-fixture subsystem FE model, which predicts surface vibration and pseudo sound power on the motor housing.
Technical Paper

NVH Development of EU5 2.0L and 2.2L Diesel Engine

2011-04-12
2011-01-0932
There is higher and higher demand by customers for vehicles with the maximum level of comfort, this aspect being a target to be achieved together with the general trend to increase performance and also with the necessity to reduce engine out emissions to satisfy the new environmental regulations. GMDAT has recently developed new EU5 2.0 and 2.2 liter L4-cylinder turbocharged Diesel engines that, to address customer demands, have improved power, lower exhaust gas emissions and NVH performance aligned to best in class in its segment. With the final aim of making this engine best in class from an NVH perspective, the NVH development has been executed in a very structured way, going through target setting and deployment, concept and design, combustion and mechanical development through computational analysis first and subsequently experimental tests.
X