Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode

2020-04-14
2020-01-0307
Butanol is an attractive alternative fuel by virtue of its renewable source and low sooting tendency. In this paper, three butanol isomers (n-butanol, isobutanol, and tert-butanol) were induced via port injection respectively and n-heptane was directly injected into the cylinder to investigate reactivity controlled compression ignition in a heavy-duty diesel engine. This work evaluates the potential of applying butanol as low reactivity fuel and the effects of reactivity gradient on combustion and emission characteristics. The experiments were performed from low load to medium-high load. Due to the different reactivities among the butanol isomers, the exhaust gas recirculation rate and the direct injection strategy were varied for a specific butanol isomer and testing load. Particularly, isobutanol/n-heptane can be operated with single direct injection and no exhaust gas recirculation up to medium load due to the high octane rating.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Technical Paper

Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations

2018-09-10
2018-01-1689
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa - 22.8 & 40 kg/m3-15 & 20.5% O2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction.
Journal Article

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0300
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies.
Journal Article

Validation of Longer and Heavier Vehicle Combination Simulation Models

2013-09-24
2013-01-2369
This paper discusses the development and subsequent validation process of generic multi-body models for commercial vehicle combinations. The model is intended for performance assessment and improving of current and future combinations for the European road network. A second goal is to employ the model for the development of driver support systems and active steering strategies for both low speed manoeuvrability and high speed stability. The model is developed in SimMechanics, which is part of the MATLAB/Simulink software. Due to its modularity, one can quickly modify the model to the desired configuration and dimensions; therefore various multi articulation vehicle models can be created. The paper further illustrates the simplified and generic modelling methods used to build particular components such as chassis, tyres or suspension in the multibody domain.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
X