Refine Your Search

Topic

Search Results

Journal Article

Automated Model Fit Method for Diesel Engine Control Development

2014-04-01
2014-01-1153
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is considered to be standard for engine testing. The potential of the automated fit tool is demonstrated for two different heavy-duty diesel engines. This demonstrates that the combustion model and model fit methodology is not engine specific. Comparison of model and experimental results shows accurate prediction of in-cylinder peak pressure, IMEP, CA10, and CA50 over a wide operating range. This makes the model suitable for closed-loop combustion control development. However, NO emission prediction has to be improved.
Technical Paper

Characterization of Low Load PPC Operation using RON70 Fuels

2014-04-01
2014-01-1304
The concept of Partially Premixed Combustion is known for reduced hazardous emissions and improved efficiency. Since a low-reactive fuel is required to extend the ignition delay at elevated loads, controllability and stability issues occur at the low-load end. In this investigation seven fuel blends are used, all having a Research Octane Number of around 70 and a distinct composition or boiling range. Four of them could be regarded as ‘viable refinery fuels’ since they are based on current refinery feedstocks. The latter three are based on primary reference fuels, being PRF70 and blends with ethanol and toluene respectively. Previous experiments revealed significant ignition differences, which asked for further understanding with an extended set of measurements. Experiments are conducted on a heavy duty diesel engine modified for single cylinder operation. In this investigation, emphasis is put on idling (600 rpm) and low load conditions.
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
Technical Paper

Correlating Flame Location and Ignition Delay in Partially Premixed Combustion

2012-09-10
2012-01-1579
Controlling ignition delay is the key to successfully enable partially premixed combustion in diesel engines. This paper presents experimental results of partially premixed combustion in an optically accessible engine, using primary reference fuels in combination with artificial exhaust gas recirculation. By changing the fuel composition and oxygen concentration, the ignition delay is changed. To determine the position of the flame front, high-speed visualization of OH-chemiluminescence is used, enabling a cycle-resolved analysis of OH formation. A clear correlation is observed between ignition delay and flame location. The mixing of fuel and air during the ignition delay period defines the local equivalence ratio, which is estimated based on a spherical combustion volume for each spray. The corresponding emission measurements using fast-response analyzers of CO, HC and NOX confirm the decrease in local equivalence ratio as a function of ignition delay.
Technical Paper

Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode

2020-04-14
2020-01-0307
Butanol is an attractive alternative fuel by virtue of its renewable source and low sooting tendency. In this paper, three butanol isomers (n-butanol, isobutanol, and tert-butanol) were induced via port injection respectively and n-heptane was directly injected into the cylinder to investigate reactivity controlled compression ignition in a heavy-duty diesel engine. This work evaluates the potential of applying butanol as low reactivity fuel and the effects of reactivity gradient on combustion and emission characteristics. The experiments were performed from low load to medium-high load. Due to the different reactivities among the butanol isomers, the exhaust gas recirculation rate and the direct injection strategy were varied for a specific butanol isomer and testing load. Particularly, isobutanol/n-heptane can be operated with single direct injection and no exhaust gas recirculation up to medium load due to the high octane rating.
Technical Paper

Effects of Different Injection Strategies and EGR on Partially Premixed Combustion

2018-09-10
2018-01-1798
Premixed Charge Compression Ignition concepts are promising to reduce NOx and soot simultaneously and keeping a high thermal efficiency. Partially premixed combustion is a single fuel variant of this new combustion concepts applying a fuel with a low cetane number to achieve the necessary long ignition delay. In this study, multiple injection strategies are studied in the partially premixed combustion approach to reach stable combustion and ultra-low NOx and soot emission at 15.5 bar gross indicated mean effective pressure. Three different injection strategies (single injection, pilot-main injection, main-post injection) are experimentally investigated on a heavy duty compression ignition engine. A fuel blend (70 vol% n-butanol and 30 vol% n-heptane) was tested. The effects of different pilot and post-injection timing, as well as Exhaust-gas Recirculation rate on different injection strategies investigated.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Journal Article

Experimental Validation of Extended NO and Soot Model for Advanced HD Diesel Engine Combustion

2009-04-20
2009-01-0683
A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50 %), heavy-duty DI diesel combustion. Modeling activities have aimed at limiting the computational effort while maintaining a sound physical/chemical basis. The main inputs to the model are the fuel injection rate profile, in-cylinder pressure data and trapped in-cylinder conditions together with basic fuel spray information. Obtaining accurate values for these inputs is part of the model validation process which is thoroughly described. Modeling results are compared with single-cylinder as well as multi-cylinder heavy-duty diesel engine data. NO and soot level predictions show good agreement with measurement data for conventional and high-EGR combustion with conventional timing.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Technical Paper

Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations

2018-09-10
2018-01-1689
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa - 22.8 & 40 kg/m3-15 & 20.5% O2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Implementation of High-Speed Laser-Induced Incandescence Imaging in CI Engines

2016-04-05
2016-01-0725
Laser-induced incandescence (LII) is a well-established technique for tracking soot, potentially enabling soot volume fraction determination. To obtain crank angle resolved data from a single cycle, a multi-kHz system should be applied. Such an approach, however, imposes certain challenges in terms of application and interpretation. The present work intends to apply such a high-speed system to an optically-accessible, compression ignition engine. Possible problems with sublimation, local gas heating or other multishot effects have been studied on an atmospheric co-flow burner prior to the engine experiments. It was found that, in this flame, fluences around 0.1 J/cm2 provide the best balance between signal-tobackground ratio, and soot sublimation. This fluence is well below the plateau regime of LII, which poses additional problems with interpretation of the signal. This is especially true when a wide span of temperatures and gradients is present, as encountered in diesel combustion.
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

2008-10-06
2008-01-2385
An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
Technical Paper

LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine

1990-09-01
901576
LDA technique was used to investigate valve exit flow and in-cylinder flow generated by a directed intake port of a heavy duty Diesel engine under steady and unsteady conditions. The results obtained under both steady and unsteady show the flow patterns is very sensitive to the valve lift with this type of intake port. At small valve lift, flow profile around the valve periphery is relatively uniform, the corresponding in-cylinder flow is characteristic of double vortex. With valve lift increasing, the separating region appears near the valve seat in part of the valve periphery, therefore the flow pattern begins to depend on the position around the valve periphery. As a result, the valve exit flow is almost along the elongation of intake port at the maximum lift, the corresponding in-cylinder flow behaves as a solid body of rotation. The motion of valve seems to have little effects on the valve exit flow pattern.
Technical Paper

Literature Study and Feasibility Test Regarding a Gasoline/EHN Blend Consumed by Standard CI-Engine Using a Non-PCCI Combustion Strategy

2013-09-08
2013-24-0099
A literature and experimental study was done to create an overview of the behavior of gasoline combusted in a CI-engine. This paper creates a first overview of the work to be done before implementing this Gasoline Compression Ignition concept in a multi-cylinder engine. According to literature the gasoline blend will have advantages over diesel. First the shorter molecular chain of the gasoline makes it less prone to soot. Second the lower density gives the gasoline a higher nozzle exit speed resulting in better mixing capabilities. Third the lower density and higher volatility lets the spray length decrease. This lowers the chance of wall-impingement, but creates worse mixing conditions looking from a spray point of view. The CO and HC emissions tend to increase relative to operation with diesel fuel, NOx emissions largely depend on the choice of combustion strategy and could be influenced by the nitrogen bound to the EHN molecule that is used as an ignition improver.
Technical Paper

Modeling of Conventional and Early Diesel Injection Combustion Characteristics using FGM Approach

2013-04-08
2013-01-1108
The wide range of diesel engine operating conditions demand for a robust combustion model to account for inherent changes. In this work, the Flamelet Generate Manifold (FGM) approach is applied, in STAR-CD framework, to simulate the conventional injection- and early injection-timing (PCCI like) combustion regimes. Igniting Counter flow Diffusion Flamelets (ICDFs) and Homogeneous Reactors (HRs) are used to tabulate chemistry for conventional and PCCI combustion modes, respectively. The validation of the models with experimental data shows that the above consideration of chemistry tabulation results in accurate ignition delay predictions. The study reveals that a moderate amount of 5 different pressure levels is necessary to include in the FGM database to capture the ignition delay in both combustion regimes.
Technical Paper

On-Board Plasma Assisted Fuel Reforming

2011-09-11
2011-24-0088
It is well known that the addition of gaseous fuels to the intake manifold of diesel engines can have significant benefits in terms of both reducing emissions of hazardous gases and soot and improving fuel economy. Particularly, the addition of LPG has been investigated in numerous studies. Drawbacks, however, of such dual fuel strategies can be found in storage complexity and end-user inconvenience. It is for this reason that on-board refining of a single fuel (for example, diesel) could be an interesting alternative. A second-generation fuel reformer has been engineered and successfully tested. The reformer can work with both gaseous and liquid fuels and by means of partial oxidation of a rich fuel-air mix, converts these into syngas: a mixture of H₂ and CO. The process occurs as partial oxidation takes place in an adiabatic ceramic reaction chamber. High efficiency is ensured by the high temperature inside the chamber due to heat release.
X