Refine Your Search

Topic

Search Results

Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Journal Article

AFP Processing of Dry Fiber Carbon Materials (DFP) for Improved Rates and Reliability

2020-03-10
2020-01-0030
Automated fiber placement of pre-impregnated (pre-preg), thermoset carbon materials has been industrialized for decades whereas dry-fiber carbon materials have only been produced at relatively low rates or volumes for large aerospace structures. This paper explores the differences found when processing dry-fiber, thermoset, carbon materials (DFP) as compared to processing pre-preg, thermoset materials with Automated Fiber Placement (AFP) equipment at high rates. Changes to the equipment are required when converting from pre-preg to dry fiber material processing. Specifically, the heating systems, head controls, and tow tension control all must be enhanced when transitioning to DFP processes. Although these new enhancements also require changes in safety measures, the changes are relatively small for high performance systems. Processing dry fiber material requires a higher level of heating, tension control and added safety measures.
Technical Paper

An Automated Production Fastening System for LGP and Hi-Lok Titanium Bolts for the Boeing 737 Wing Panel Assembly Line

2015-09-15
2015-01-2514
A new automated production system for installation of Lightweight Groove Proportioned (LGP) and Hi-Lock bolts in wing panels has been implemented in the Boeing 737 wing manufacturing facility in Renton, Washington. The system inserts LGP and Hi-Lok bolts into interference holes using a ball screw mechanical squeeze process supported by a back side rod-locked pneumatic clamp cylinder. Collars are fed and loaded onto a swage die retaining pin, and swaging is performed through ball screw mechanical squeeze. Offset and straight collar tools allow the machine to access 99.9% of fasteners in 3/16″, ¼″ and 5/16″ diameters. Collar stripping forces are resolved using a dynamic ram inertial technique that reduces the pull on the work piece. Titanium TN nuts are fed and loaded into a socket with a retaining spring, and installed on Hi-Loks Hi-Lok with a Bosch right angle nut runner.
Journal Article

Automated Floor Drilling Equipment for the 767

2014-09-16
2014-01-2270
A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
Journal Article

Automated In-Process Inspection System for AFP Machines

2015-09-15
2015-01-2608
In many existing AFP cells manual inspection of composite plies accounts for a large percentage of production time. Next generation AFP cells can require an even greater inspection burden. The industry is rapidly developing technologies to reduce inspection time and to replace manual inspection with automated solutions. Electroimpact is delivering a solution that integrates multiple technologies to combat inspection challenges. The approach integrates laser projectors, cameras, and laser profilometers in a comprehensive user interface that greatly reduces the burden on inspectors and decreases overall run time. This paper discusses the implementation of each technology and the user interface that ties the data together and presents it to the inspector.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Electroimpact Automatic Fan Cowl Riveter

2024-03-05
2024-01-1922
The Electroimpact Automatic Fan Cowl Riveter exhibits new and unique design features and automated process capabilities that address and overcome three primary technical challenges. The first challenge is satisfying the customer-driven requirement to access the entire fastening area of the fan cowl doors. This necessitates a unique machine design which is capable of fitting ‘inside’ a fan cowl door radius. The second challenge is determining drill geometry and drill process parameters which can produce consistent and high-quality countersunk holes in varying mixed-metal stack-up combinations consisting of aluminum, titanium, and stainless steel. The third challenge is providing the capability of fully automatic wet installation of hollow-ended titanium rivets.
Journal Article

Enhanced Robotic Automated Fiber Placement with Accurate Robot Technology and Modular Fiber Placement Head

2013-09-17
2013-01-2290
The process of robotic automated fiber placement has been enhanced by combining the technologies of an accurate articulated robotic system with a modular Automated Fiber Placement (AFP) head. The accurate robotic system is comprised of an off-the-shelf 6-axis KUKA Titan KR1000L750 riding on a linear axis with an option for an additional part rotator axis. Each of the robot axes is enhanced with secondary position encoders. The modular fiber placement head features a robotic tool changer which allows quick-change of the process heads and an onboard creel. The quick-change fiber placement head and simplified tow path yields terrific process reliability and flexibility while allowing head preparations to occur offline. The system is controlled by a Siemens 840Dsl CNC which handles all process functions, robot motion, and executes software technologies developed by Electroimpact for superior positional accuracy including enhanced kinematics utilizing a high-order kinematic model.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Journal Article

Implementation of Non-Contact Drives into a High-Rail, 7-Axis, AFP Motion Platform

2013-09-17
2013-01-2288
Traditionally, automated fiber placement (AFP) motion platforms use rack and pinion drive trains coupled through a gearbox to a rotary motor. Extensive use of non-contact linear motors on a new AFP motion platform produces a quiet, low-maintenance system without sacrificing precision. A high-rail gantry arrangement allows dynamic performance improvements to machine acceleration and speed, while lowering power consumption costs and capital expenses. The seventh axis incorporated into the machine arrangement effectively produces an effective “five sides of a cube” work envelope, permitting complex spar and panel fabrication.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Journal Article

In-Process Hole and Fastener Inspection Using a High-Accuracy Laser Sensor

2020-03-10
2020-01-0015
Electroimpact has produced a new in-process inspection system for use on drilling and fastening systems. The system uses a high-accuracy, non-contact, laser system to measure the flushness of installed fasteners. The system is also capable of measuring part normality and providing feedback to the machine for correction. One drawback to many automatic inspection systems is measurement error. Many sources of measurement error exist in a production environment, including drilling chips, lubrication, and fastener head markings. Electroimpact’s latest system can create a visualization of the measured fastener for the operator to interpret. This allows the operator to determine the cause of a failed measurement, thus reducing machine downtime due to false negatives. Electroimpact created a custom C# WPF application that queries the point-cloud data and analyzes the raw data. A custom “circle Hough transform” scoring algorithm is used to find the center of the nosepiece (pressure foot).
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
Technical Paper

Integrated Hole and Countersink Inspection of Aircraft Components

2013-09-17
2013-01-2147
Precision hole inspection is often required for automated aircraft assembly. Direct contact measurement has been proven reliable and accurate for over 20 years in production applications. At the core of the hole measurement process tool are high precision optical encoders for measurement of diameter and countersink depth. Mechanical contact within the hole is via standard 2-point split ball tips, and diametric data is collected rapidly and continuously enabling the system to profile the inner surface at 0 and 90 degrees. Hole profile, countersink depth, and grip length data are collected in 6 seconds. Parallel to the active process, auto-calibration is performed to minimize environmental factors such as thermal expansion. Tip assemblies are selected and changed automatically. Optional features include concave countersink and panel position measurement.
X