Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Dynamic Piston Position Measurements Using a Laser Range-Finding Technique

1990-02-01
900482
A nonintrusive diagnostic technique has been developed by which dynamic axial piston-position and tilt-angle measurements have been made in a single-cylinder research engine. A laser beam, introduced into the combustion chamber through an optical port in the cylinder head, was reflected by a polished surface on the piston crown. Motion of the reflected beam, carrying with it information on piston position and piston tilt, was monitored by a set of receiving optics. Piston motion was studied as a function of both engine speed and cylinder pressure (i.e., piston loading.) Measured axial piston-position was found to deviate from the theoretical position calculated from the measured crank-shaft position owing to the effects of tilt and piston loading. Furthermore, evidence of piston veer (tilt of the piston in a plane parallel to the axis of the wrist pin) was observed, which had an effect on the accuracy of the axial piston-position measurement.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine

1999-10-25
1999-01-3657
Numerical simulations are performed to investigate the fuel/air mixing preparation in a gasoline direct injection (GDI) engine. A two-valve OHV engine with wedge combustion chamber is investigated since automobiles equipped with this type of engine are readily available in the U.S. market. Modifying and retrofitting these engines for GDI operation could become a viable scenario for some engine manufactures. A pressure-swirl injector and wide spacing injection layout are adapted to enhance mixture preparation. The primary interest is on preparing the mixture with adequate equivalence ratio at the spark plug under a wide range of engine operating conditions. Two different engine operating conditions are investigated with respect to engine speed and load. A modified version of the KIVA-3V multi-dimensional CFD code is used. The modified code includes the Linearized Instability Sheet Atomization (LISA) model to simulate the development of the hollow cone spray.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
X