Refine Your Search

Topic

Search Results

Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Journal Article

An Experimental Investigation into Diesel Engine Size-Scaling Parameters

2009-04-20
2009-01-1124
With recent increases in global fuel prices there has become a growing interest in expanding the use of diesel engines in the transportation industry. However, new engine development is costly and time intensive, requiring many hours of expensive engine tests. The ability to accurately predict an engine's performance based on existing models would reduce the expense involved in creating a new engine of different size. In the present study experimental results from two single-cylinder direct injection diesel engines were used to examine previously developed engine scaling models. The first scaling model was based on an equal spray penetration correlation. The second model considered both equal spray penetration and flame lift-off length. The engines used were a heavy-duty Caterpillar engine with a 2.44L displacement and a light-duty GM engine with a 0.48L displacement.
Technical Paper

An Experimental Study on Emissions Optimization Using Micro-Genetic Algorithms in a HSDI Diesel Engine

2003-03-03
2003-01-0347
Current automotive diesel engine research is motivated by the need to meet more-and-more strict emission regulations. The major target for future HSDI combustion research and development is to find the most effective ways of reducing the soot particulate and NOx emissions to the levels required by future emission regulations. Recently, a variety of statistical optimization tools have been proposed to optimize engine-operating conditions for emissions reduction. In this study, a micro-genetic algorithm technique, which locates a global optimum via the law of “the survival of the fittest”, was applied to a high-speed, direct-injection, single-cylinder (HSDI) diesel engine. The engine operating condition considered single-injection operation using a common-rail fuel injection system was at 1757 rev/min and 45% load.
Technical Paper

An Experimental and Numerical Study of Injector Behavior for HSDI Diesel Engines

2003-03-03
2003-01-0705
An experimental and numerical characterization has been conducted for high-pressure hydraulically actuated fuel injection systems. One single and one double-guided multi-hole Valve-Covered-Orifice (VCO) type injector was used with a Common Rail (CR) injection system, and two mini-sac injectors for Hydraulic electronic Unit Injection system (HEUI) were used with different orifice diameters. The purpose of the study was to explore the effects of the injection system and the operating conditions on the engine emissions for a direct injection small bore diesel engine. The diesel spray was injected into a pressurized chamber with optical access at ambient temperature. The gas density inside the chamber was representative of the density in a High Speed Direct Injection (HSDI) diesel engine at the time of injection. The experimental spray parameters included: injection pressure, injection duration, nozzle type, and nozzle diameter.
Technical Paper

An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations

2008-04-14
2008-01-0970
Lagrangian-Droplet and Eulerian-Fluid (LDEF) based spray models are widely used in engine and combustion system computations. Numerical grid and time-step-dependencies of Discrete Droplet Lagrangian spray models have been identified by previous researchers [1, 2]. The two main sources of grid-dependency are due to errors in predicting the droplet-gas relative velocity, and errors in describing droplet-droplet collision and coalescence processes. For reducing grid-dependency due to the relative velocity effects, results from gas jet theory are introduced along with a Lagrangian collision model [1, 3] and applied to model diesel sprays. The improved spray model is implemented in the engine simulation code KIVA-3V [4] and is tested under various conditions, including constant volume chambers and various engine geometries with vaporizing and combusting sprays with detailed chemistry.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Technical Paper

CFD Optimization of DI Diesel Engine Performance and Emissions Using Variable Intake Valve Actuation with Boost Pressure, EGR and Multiple Injections

2002-03-04
2002-01-0959
A computational optimization study was performed for a direct-injection diesel engine using a recently developed 1-D-KIVA3v-GA (1-Dimensional-KIVA3v-Genetic Algorithm) computer code. The code performs a full engine cycle simulation within the framework of a genetic algorithm (GA) code. Design fitness is determined using a 1-D (one-dimensional) gas dynamics code for the simulation of the gas exchange process, coupled with the KIVA3v code for three-dimensional simulations of spray, combustion and emissions formation. The 1-D-KIVA3v-GA methodology was used to simultaneously investigate the effect of eight engine input parameters on emissions and performance for four cases, which include cases at 2500 RPM and 1000 RPM, with both simulated at high-load and low-load conditions.
Technical Paper

Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations

2004-03-08
2004-01-0558
A reduced chemical reaction mechanism is developed and validated in the present study for multi-dimensional diesel HCCI engine combustion simulations. The motivation for the development of the reduced mechanism is to enhance the computational efficiency of engine stimulations. The new reduced mechanism was generated starting from an existing n-heptane mechanism (40 species and 165 reactions). The procedure of generating the reduced mechanism included: using SENKIN to produce the ignition delay data and solution files, using XSENKPLOT to analyze the base mechanism and to identify important reactions and species, eliminating unimportant species and reactions, formulating the new reduced mechanism, using the new mechanism to generate ignition delay data, and finally adjusting kinetic constants in the new mechanism to improve ignition delay and engine combustion predictions to account for diesel fuel cetane number and composition effects.
Technical Paper

Development of a Universal Turbulent Combustion Model for Premixed and Direct Injection Spark/Compression Ignition Engines

2004-03-08
2004-01-0102
A universal engine combustion model based on the level-set approach was developed in this study. It was first used to model combustion in Spark Ignition (SI) and Direct Injection Spark Ignition (DISI) engines when combined with the Discrete Particle Spark Ignition model, in which the ignition kernel is represented by particles. Once the flame kernel grows to a size that the turbulent flame is fully developed, the G-equation model is used to track the subsequent propagation of the turbulent flame. When combined with a characteristic time combustion model, the triple flame structure that is found in DISI engine combustion was successfully modeled. The model was also applied to simulate diesel combustion where the diffusion combustion regime is dominant. In this case, the ignition was modeled using the Shell auto-ignition model. Satisfactory agreement with features of the conceptual diesel combustion model of Dec [1997] was found.
Technical Paper

Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

2001-03-05
2001-01-0547
The recently developed KIVA-GA computer code was used in the current study to optimize the combustion chamber geometry of a heavy -duty diesel truck engine and a high-speed direct-injection (HSDI) small-bore diesel engine. KIVA-GA performs engine simulations within the framework of a genetic algorithm (GA) global optimization code. Design fitness was determined using a modified version of the KIVA-3V code, which calculates the spray, combustion, and emissions formation processes. The measure of design fitness includes NOx, unburned HC, and soot emissions, as well as fuel consumption. The simultaneous minimization of these factors was the ultimate goal. The KIVA-GA methodology was used to optimize the engine performance using nine input variables simultaneously. Three chamber geometry related variables were used along with six other variables, which were thought to have significant interaction with the chamber geometry.
Technical Paper

Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits

2006-04-03
2006-01-1149
The effect of piston ring pack crevice flow and lubricant oil vaporization on heavy-duty diesel engine deposits is investigated numerically using a multidimensional CFD code, KIVA3V, coupled with Chemkin II, and computational grids that resolve part of the crevice region appropriately. Improvements have been made to the code to be able to deal with the complex geometry of the ring pack, and sub-models for the crevice flow dynamics, lubricating oil vaporization and combustion, soot formation and deposition were also added to the code. Eight parametric cases were simulated under reacting conditions using detailed chemical kinetics to determine the effects of variations of lube-oil film thickness, distribution of the oil film thickness, number of injection pulses, and the main injection timing on engine soot deposition. The results show that crevice-borne hydrocarbon species play an important role in deposit formation on crevice surfaces.
Technical Paper

Efficient Multidimensional Simulation of HCCI and DI Engine Combustion with Detailed Chemistry

2009-04-20
2009-01-0701
This paper presents three approaches that can be used for efficient multidimensional simulations of HCCI and DI engine combustion. The first approach uses a newly developed Adaptive Multi-grid Chemistry (AMC) model. The AMC model allows a fine mesh to be used to provide adequate resolution for the spray simulation, while dramatically reducing the number of cells that need to be computed by the chemistry solver. The model has been implemented into the KIVA3v2-CHEMKIN code and it was found that computer time was reduced by a factor of ten for HCCI cases and a factor of three to four for DI cases without losing prediction accuracy. The simulation results were compared with experimental data obtained from a Honda engine operated with n-heptane under HCCI conditions for which directly measured in-cylinder temperature and H2O mole fraction data are available.
Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0716
A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
Technical Paper

Modeling Combustion and Emissions of HSDI Diesel Engines Using Injectors with Different Included Spray Angles

2006-04-03
2006-01-1150
Combustion in an HSDI diesel engine using different injectors to realize low emissions is modeled using detailed chemical kinetics in this study. Emission characteristics of the engine are investigated using injectors that have different included spray angles, ranging from 50 to 130 degrees. The engine was operated under PCCI conditions featuring early injection times, high EGR levels and high intake temperatures. The Representative Interactive Flamelet (RIF) model was used with the KIVA code for combustion and emission modeling. Modeling results show that spray targeting plays an important role in determining the in-cylinder mixture distributions, which in turn affect the resulting pollutant emissions. High soot emissions are observed for injection conditions that result in locally fuel rich regions due to spray impingement normal to the piston surface.
Technical Paper

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-04-03
2006-01-0027
A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. A two-stage combustion (TSC) concept was explored to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load). Two combustion modes were combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. This can be achieved for example by optimization of two-stage combustion using multiple injection or sprays from two different injectors.
Technical Paper

Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method

2003-03-03
2003-01-0722
An improved discrete particle ignition kernel (DPIK) model and the G-equation combustion model have been developed and implemented in KIVA-3V. In the ignition model, the spark ignition kernel growth is tracked by Lagrangian markers and the spark discharge energy and flow turbulence effects on the ignition kernel growth are considered. The predicted ignition kernel size was compared with the available measurements and good agreement was obtained. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the level set method (G-equation) is used to track the mean turbulent flame propagation. It is shown that, by ignoring the detailed turbulent flame brush structure, fine numerical resolution is not needed, thus making the models suitable for use in multidimensional modeling of SI engine combustion.
Technical Paper

Modeling Premixed and Direct Injection SI Engine Combustion Using the G-Equation Model

2003-05-19
2003-01-1843
A level set G-equation model has been developed to model the combustion process in spark ignition engines. The spark ignition process was modeled using an improved version of the Discrete Particle Ignition Kernel (DPIK) model. The two models were implemented into the KIVA-3V code to simulate SI engine combustion under both premixed and direct injection conditions. In the ignition model, the ignition kernel growth is tracked by Lagrangian markers, and spark discharge energy and flow turbulence effects on the kernel growth are considered. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the G-equation model is used to track the mean turbulent flame evolution. When combined with a characteristic time scale combustion model, the models were also used to simulate stratified combustion in DISI engines, where the triple flame structure must be considered.
X