Refine Your Search

Topic

Author

Search Results

Technical Paper

A Characterization of Exhaust Emissions from Lean Burn, Rotary, and Stratified Charge Engines

1977-02-01
770301
This paper reports the results of an exhaust emissions characterization from the non-catalyst control systems employed on the Mazda RX-4 rotary, the Honda CVCC, and the Chrysler electronic lean burn. Throughout the paper, exhaust emissions from these vehicles are compared to those from a Chrysler equipped with an oxidation catalyst and an air pump. The emissions characterized are carbon monoxide, hydrocarbons, nitrogen oxides, sulfur dioxide, sulfates, hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, aldehydes, particulate matter, and detailed hydrocarbons. A brief description of the sampling and analysis procedures used is included within the discussion.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Comparison of Exhaust Emissions from a Vehicle Fueled with Methanol-Containing Additives for Flame Luminosity

1993-03-01
930220
Two additive blends proposed for improving the flame luminosity in neat methanol fuel were investigated to determine the effect of these additives on the exhaust emissions in a dual-fueled Volkswagen Jetta. The two blends contained 4 percent toluene plus 2 percent indan in methanol and 5 percent cyclopentene plus 5 percent indan in methanol. Each blend was tested for regulated and unregulated emissions as well as a speciation of the exhaust hydrocarbons resulting from use of each fuel. The vehicle exhaust emissions from these two fuel blends were compared to the Coordinating Research Council Auto-Oil national average gasoline (RF-A), M100, and M85 blended from RF-A. Carter Maximum Incremental Reactivity Factors were applied to the speciated hydrocarbon emission results to determine the potential ozone formation for each fuel. Toxic emissions as defined in the 1990 Clean Air Act were also compared for each fuel.
Technical Paper

Comparison of the Exhaust Emissions from California Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel:A Case Study of 11 Passenger Vehicles

1996-05-01
961221
While most studies addressing the fuel effects are based on the Federal Test Procedure (FTP), there are limited studies investigating the fuel effects outside FTP test conditions. In this study, we investigated the differences in exhaust emissions from California Phase 1 to Phase 2 reformulated gasoline over a wide range of speed and ambient temperatures. Eleven catalyst equipped passenger vehicles were tested. The vehicles were comprised of three fuel delivery system configurations, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. Each vehicle was given 60 tests with the combination of two reformulated fuels: Phase 1 (without oxygenates) and Phase 2 (with oxygenates), three temperatures (50, 75, and 100 °F), and ten speed cycles (average speed ranges from 4 mph to 65 mph).
Technical Paper

Design of a High Compression, Direct-Injection, Spark-Ignition, Methanol Fueled Research Engine with an Integral Injector-Ignition Source Insert

2001-09-24
2001-01-3651
A stratified charge research engine and test stand were designed and built for this work. The engine was designed to exhibit some of the desirable traits of both the premixed charge gasoline engine and modern diesel engine. This spark ignition engine is fueled by M100 (99.99% pure methanol), operates under high compression (19.3:1) and uses direct fuel injection to form a stratification of the fuel-air mixture in the cylinder. The beginning of the combustion event of the stratified mixture is triggered by spark plug discharge. The primary goal of this project was to evaluate the feasibility of using a removable integral injector ignition source insert, which allows a convenient method of changing the relative location of the fuel injector to the ignition source, as well as the compression ratio, squish height, and bowl volumes. This paper provides an explanation of the hardware included in the experimental setup of the engine and selection of the direct injector configuration.
Technical Paper

Detection of Gasoline Vehicles with Gross PM Emissions

2007-04-16
2007-01-1113
Light duty gasoline vehicles (LDGV) are estimated to contribute 40% of the total on-road mobile source tailpipe emissions of particulate matter (PM) in California. While considerable efforts have been made to reduce toxic diesel PM emissions going into the future, less emphasis has been placed on PM from LDGVs. The goals of this work were to characterize a small fleet of visibly smoking and high PM emitting LDGVs, to explore the potential PM-reduction benefits of Smog Check and of repairs, and to examine remote sensing devices (RSD) as a potential method for identifying high PM emitters in the in-use fleet. For this study, we recruited a fleet of eight vehicles covering a spectrum of PM emission levels. PM and criteria pollutant emissions were quantified on a dynamometer and CVS dilution tunnel system over the Unified Cycle using standard methods and real time PM instruments.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Development of Greenhouse Gas Emissions Model for 2014-2017 Heavy- and Medium-Duty Vehicle Compliance

2011-09-13
2011-01-2188
Of all existing modes of transportation, onroad motor vehicles are the largest contributor to greenhouse gas emissions and fuel usage. The Environmental Protection Agency and the National Highway Traffic Safety Administration finalized regulations in April 2010 to reduce greenhouse gas emissions and improve fuel economy for 2012-2016 model year light-duty vehicles. In November 2010, both agencies jointly proposed the first ever greenhouse gas standards for medium- and heavy-duty trucks which are expected to take effect for model years starting in 2014. Vehicles of light-duty families are subject to mandatory testing for certification and compliance. Unlike the light-duty sector where a vast majority of vehicles are mass produced for generally similar purposes, medium- and heavy-duty vehicles are commonly custom-made.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Journal Article

Effects of B20 versus ULSD Fuel on Diesel Engine PM Emissions and Aftertreatment Performance

2010-04-12
2010-01-0790
A detailed study is undertaken to examine how 2010+ diesel engine exhaust emissions change when a soybean-derived B20 biodiesel fuel is used instead of a conventional ultra-low sulfur diesel fuel and to investigate how these changes impact the aftertreatment system. Particulate matter (PM) emissions for each fuel are characterized in terms of mass emissions, size distributions, organic versus soot fraction, metals content, and particle morphology. PM mass recorded by Dekati Mass Monitor, thermal analysis of quartz filters, and calculated from particle size distributions consistently shows a 2 - 3 fold decrease in engine-out soot emissions over a wide mid-load range when changing from ULSD to B20 fuel. This is partly due to a decrease in particle number and partly to a decrease in average size. HC and NO emissions, in contrast, exhibit little change with fuel type.
Technical Paper

Emission Effects of Shell LOW NOX Fuel on a 1990 Model Year Heavy Heavy-Duty Diesel Engine

1996-10-01
961973
The Environmental Protection Agency (EPA) recently tested a clean diesel fuel developed by Dion & Sons for use in stationary sources. This fuel is known as Amber 363 in Southern California and its technology is licensed outside of the Southern California area to Shell Oil Products Company for use as a stationary source fuel. The fuel, hereafter referred to as “Shell LOW NOX Fuel,” was tested in a 1990 model year heavy heavy-duty diesel engine using both the transient Federal Test Procedure (FTP) for on-highway heavy-duty engines, the steady-state FTP for nonroad heavy-duty engines, and the steady-state generator set test cycle. For each test, EPA measured hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter (PM) emissions. Transient testing showed that the Shell LOW NOX Fuel lowers NOx, HC and PM emissions with no statistically significant change in CO emissions for both cold-starts and hot-starts when compared to diesel certification test fuel.
Technical Paper

Emissions Control of Gasoline Engines for Heavy-Duty Vehicles

1975-02-01
750903
This paper summarizes an investigation of reductions in exhaust emission levels attainable using various techniques appropriate to gasoline engines used in vehicles over 14,000 lbs GVW. Of the eight gasoline engines investigated, two were evaluated parametrically resulting in an oxidation and reduction catalyst “best combination” configuration. Four of the engines were evaluated in an EGR plus oxidation catalyst configuration, and two involved only baseline tests. Test procedures used in evaluating the six “best combination” configurations include: three engine emission test procedures using an engine dynamometer, a determination of vehicle driveability, and two vehicle emission test procedures using a chassis dynamometer. Dramatic reductions in emissions were attained with the catalyst “best combination” configurations. Engine durability, however, was not investigated.
Technical Paper

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel and Emissions Control Devices

2009-11-02
2009-01-2722
A novel in situ method was performed for measuring emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. The test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. The exhaust configurations were a stock original equipment manufacturer (OEM) muffler and a Thermo King pDPF™ diesel particulate filter. The two TRU engine operating speeds were high and low, as controlled by the TRU user interface. Test results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine operating speeds. Separately, the application of a Thermo King pDPF reduced regulated emissions, in some cases almost entirely. Finally, the application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine operating speed, but with an increase in oxides of nitrogen (NOx) at low engine speed.
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Evaluation of Fluorocarbon Polymer Bag Material for Near Zero Exhaust Emission Measurement

2001-09-24
2001-01-3535
When the California Air Resources Board (ARB) adopted automotive exhaust emission standards for Super Ultra-Low-Emission Vehicles (SULEV), new challenges were encountered for accurately measuring exhaust emissions. This is especially true for measuring NMOG emissions (NMHC and carbonyls) where the SULEV standard is 0.010 g/mi. One of the challenges in accurately measuring NMHC emissions is to find a clean sample bag material that has no or very low outgassing of hydrocarbons. Tedlar, the bag material commonly used for exhaust emission sampling, has been found to emit N,N- dimethylacetamide (DMAc), which interferes with hydrocarbon measurements and can contribute to significant error in SULEV hydrocarbon emission measurements. Several fluorocarbon materials were tested for hydrocarbon (HC) outgassing and carbon dioxide (CO2) permeation. The materials include Tedlar, Baked Tedlar, KynarFlex 2750, Baked KynarFlex 2800, Teflon FEP, TFM TFE, Tefzel, and Halar.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Technical Paper

Exhaust Emissions 1966-1972 Model Year Light Duty Motor Vehicles

1974-02-01
741005
This report describes the results of a surveillance study initiated by the U.S. Environmental Protection Agency to measure gaseous exhaust emissions from 1020 light-duty motor vehicles. This project was the second effort in a continuing program using the CVS Federal Test Procedure. Selected privately-owned vehicles, drawn randomly from six metropolitan areas, were tested in as-received condition. The emissions data obtained from these 1966-1972 model-year vehicles are reported in grams per mile of unburned hydrocarbons, carbon monoxide, carbon dioxide and oxides of nitrogen while fuel economy is reported in mpg as determined over the Federal Driving Schedule.
Technical Paper

Field Test of an Exhaust Gas Recirculation System for the Control of Automotive Oxides of Nitrogen

1972-02-01
720511
The California Air Resources Board conducted an extensive field test program to evaluate a vehicle exhaust recirculation system for control of oxides of nitrogen. The system utilized hot exhaust gases from the crossover and included certain modifications to the carburetion, choke, and crank case ventilation system. It was tested on two fleets of automobiles equipped wtih California approved HC and CO emission control devices. The test program involved periodic measurements of exhaust emissions and fuel consumption. The effect of the system on vehicle drivability, engine deposits, wear, and oil deterioration was also studied. The Atlantic Richfield Company, under contract to the Air Resources Board, equipped the vehicles with the recirculation system and performed the final engine inspection.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
X