Refine Your Search

Topic

Author

Search Results

Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Technical Paper

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources - Part II

2011-05-17
2011-01-1620
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻ 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Technical Paper

Convected Wave Equation for a Moving Body in an Inhomogeneous Flow

2018-06-13
2018-01-1517
Sound field around a moving body in a mean flow of fluid is commonly estimated with Ffowcs Williams and Hawkings equation. Similarly as Lighthill’s aeroacoustic analogy, Ffowcs Williams and Hawkings equation includes sound propagation phenomena in moving and inhomogeneous media, such as convection and refraction, implicitly within the source terms on the right-hand side of the equation. Consequently, the equation is primarily applicable when the surrounding fluid is quiescent everywhere outside the source region. In this work, we follow the approach of Phillips and derive an exact aeroacoustic equation for a moving body in an inviscid and isentropic flow, which separates source and propagation terms on the two sides of the equation. As such, the equation can be used even when the sound propagation effects have a significant influence on the sound field.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Direct Aeroacoustics Predictions of Automotive HVAC Systems based on Lattice Boltzmann Method

2018-06-13
2018-01-1520
The demand for low noise level in vehicle cabin continues to rise lately. In particular, noise generated by eco-friendly cars such as hybrid and electric ones tends to become lower and lower. In this market environment, the noise contributions caused by HVAC systems are also increasing. Therefore, it becomes increasingly important to accurately predict noise generated by HVAC systems and analyze the noise sources and resolve the noise issue. In this study, direct acoustics prediction approach based on Lattice Boltzmann Method is applied to predict the flow-induced noise from HVAC systems including blower and ducts and find noise sources. In order to validate the simulation result, acoustics measurements are performed on HVAC systems in an anechoic room and the results are compared to each other. A new technique is applied to finding a noise source for a specific frequency and shows improved noise level through modifying the geometry related to noise sources detected by the simulation.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Evaluation and Improvement of Greenhouse Wind Noise of a SGMW SUV using Simulation Driven Design

2018-04-03
2018-01-0737
At SAIC-GM-Wuling (SGMW) the greenhouse wind noise performance of their vehicles has gained a lot of attention in the development process. In order to evaluate and improve the noise quality of a newly developed SUV a digital simulation based process has been employed during the early stage of the design. CFD simulation was used for obtaining the flow induced exterior noise sources. Performance metrics for the quality were based on interior noise levels which were calculated from the exterior sources using a SEA approach for the noise transmission through the glass panels and propagation to the driver’s or passenger’s head space. Detailed analysis of the CFD results allowed to identify noise sources and related flow structures. Based on this analysis, design modifications were then applied and tested in a sequential iterative process. As a result an improvement of more than 2 dB in overall sound pressure level could be achieved.
Journal Article

Evaluation and Optimization of Aerodynamic and Aero-Acoustic Performance of a Heavy Truck using Digital Simulation

2011-04-12
2011-01-0162
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption. The optimization of aerodynamic performance for reduced drag is a key element for achieving related performance targets. Closely related to aerodynamics are wind noise and cabin soiling and both of them are becoming more and more important as a quality criterion in many markets. This paper describes the aerodynamic and aero-acoustic performance evaluation of a Dongfeng heavy truck using digital simulation based on a LBM approach. It includes a study for improving drag within the design of a facelift of the truck. A soiling analysis is performed for each aerodynamic result by calculating the accumulation of particles emitted form the wheels on the cabin. One of the challenges in the development process of trucks is that different cabin types have to be designed.
Technical Paper

Evolution of Passenger Car Emission in Germany - A Comparative Assessment of Two Forecast Models

1993-11-01
931988
Two models for the forecast of road traffic emissions, independently developed in parallel, are comparatively presented and assessed: EPROG developed by BMW and enlarged by VDA for a national application (Germany) and FOREMOVE, developed for application on European Community scale. The analysis of the methodological character of the two algorithms proves that the models are fundamentally similar with regard to the basic calculation schemes used for the emissions. The same holds true as far as the significant dependencies of the emission factors, and the recognition and incorporation of the fundamental framework referring to traffic important parameters (speeds, mileage and mileage distribution etc) are concerned.
Technical Paper

FlexRay - The Communication System for Advanced Automotive Control Systems

2001-03-05
2001-01-0676
BMW, DaimlerChrysler, Motorola and Philips present their joint development activity related to the FlexRay communication system that is intended for distributed applications in vehicles. The designated applications for powertrain and chassis control place requirements in terms of availability, reliability and data bandwidth that cannot be met by any product currently available on the market under the testing conditions encountered in an automobile. A short look back on events so far is followed by a description of the protocol and its first implementation as an integrated circuit, as well as its incorporation into a complete tool environment.
Journal Article

Further Analyses on Prediction of Automotive Spinning Wheel Flowfield with Full Width Moving Belt Wind Tunnel Results

2017-03-28
2017-01-1519
Pickup trucks are designed with a taller ride height and a larger tire envelope compared to other vehicle types given the duty cycle and environment they operate in. These differences play an important role in the flow field around spinning wheels and tires and their interactions with the vehicle body. From an aerodynamics perspective, understanding and managing this flow field are critical for drag reduction, wheel design, and brake cooling. Furthermore, the validation of numerical simulation methodology is essential for a systematic approach to aerodynamically efficient wheel design as a standard practice of vehicle design. This paper presents a correlation the near-wheel flow field for both front and rear spinning wheels with two different wheel designs for a Ram Quad Cab pick-up truck with moving ground. Twelve-hole probe experimental data obtained in a wind tunnel with a full width belt system are compared to the predictions of numerical simulations.
Technical Paper

Hybrid Technique for Underbody Noise Transmission of Wind Noise

2011-05-17
2011-01-1700
Wind noise has become an important indicator for passenger automobile quality. Several transmission paths can be related to different parts of the vehicle exterior. While the greenhouse (side glasses, windshield, seals & others) often dominates the interior noise level above 500 Hz, the contribution coming from the underbody area usually dominates the interior noise spectrum at lower frequencies. This paper describes a framework of numerical tools which is capable of determining realistic underbody turbulent and acoustic loads being generated for typical driving conditions, as well as performing the noise transmission through underbody panels and the propagation of sound to the drivers ear location.
Technical Paper

Investigations of Automotive Defroster and Windshield Flow

2001-10-01
2001-01-3441
The specification of automotive ventilation / defrosting systems has often utilized “trial-and-error” and “prior experience” techniques. But design development and production efficiency has generated a strong interest in using more sophisticated design tools such as computational fluid dynamics. For this purpose a joint experimental and numerical study was undertaken. This comprehensive investigation was divided into two parts. First, the three dimensional defroster flow field was measured using LDA in an actual automobile. Second, LDA and infrared thermography was used to map the flow and temperature fields for a two dimensional jet impinging upon a slanted plate -- a simplified representation of a car defroster geometry.
Technical Paper

Long Term Transient Cooling of Heavy Vehicle Cabin Compartments

2010-10-05
2010-01-2018
A newly developed simulation methodology for a long term, transient tractor cabin cool-down is presented in this paper. The air flow was simulated using a Lattice-Boltzmann Equation (LBE) based 3-dimensional flow solver. The conduction and radiation effects on the solid parts as well as the average cabin air temperature evolution were solved by the thermal solver, which also includes a human comfort model. The simulation results were compared with the measured experimental test data and good agreement was observed validating the developed simulation approach. The developed methodology can be applied to all other ground vehicles cabin comfort applications.
X