Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Aerodynamic Drag of a Vehicle and Trailer Combination in Yaw

2017-03-28
2017-01-1540
Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
Technical Paper

An Investigation of Body Inertance Response for Occupant Safety Control Module Attachment Regions

2016-04-05
2016-01-0473
Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
Technical Paper

CAE Simulation of Automotive Door Upper Frame Deflection Using Aerodynamic Loads

2018-04-03
2018-01-0716
Upper frame deflection of automobile doors is a key design attribute that influences structural integrity and door seal performance as related to NVH. This is a critical customer quality perception attribute and is a key enabler to ensure wind noise performance is acceptable. This paper provides an overview of two simulation methodologies to predict door upper frame deflection. A simplified simulation approach using point loads is presented along with its limitations and is compared to a new method that uses CFD tools to estimate aerodynamic loads on body panels at various vehicle speeds and wind directions. The approach consisted of performing external aerodynamic CFD simulation and using the aerodynamic loads as inputs to a CAE simulation. The details of the methodology are presented along with results and correlation to experimental data from the wind tunnel.
Journal Article

Degradation Analysis of Flexible Film Cables in an Automotive Environment

2017-03-28
2017-01-0317
Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis. Degradation analysis often provides more information than failure time data for assessing reliability and predicting the remnant life of a system.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Journal Article

Guidelines for SUV Bodywork Design Focused on Aerodynamic Drag Reduction Using the Generic AeroSUV Model

2020-04-14
2020-01-0478
SUV Aerodynamics has received increased attention as the stake this segments holds in the automotive market keeps growing year after year, as well as its direct impact on fuel economy. Understanding the key physics in order to accomplish both fuel efficient and aesthetic products is paramount, which indeed gave origin to a major initiative to foster collaborative aerodynamic research across academia and industry, the so-called DrivAer model. In addition to this sedan-based model, a new dedicated SUV generic model, called AeroSUV [1], has been introduced in 2019, also intended to provide a common framework for aerodynamic research for both experimental work and numerical simulation validation. The present paper provides an area of common ground for SUV bodywork design focused on aerodynamic drag reduction by investigating both Estate and Fast back configurations of the generic AeroSUV model.
Technical Paper

HVAC System Bench Test Analysis for TXV Tuning

2018-04-03
2018-01-0070
In today’s automotive industry, the A/C (Air-conditioning) system is emerging into a high level of technological growth to provide quick cooling, warm up and maintaining the air quality of the cabin during all-weather conditions. In HVAC system, TXV plays vital role by separating high side to low side of vapor compression refrigeration system. It also regulates the amount of refrigerant flow to the evaporator based on A/C system load. The HVAC system bench laboratory conducts the test at different system load conditions to evaluate the outputs from tests during initial development stage to select the right TXV in terms of capacity and Superheat set point for a given system. This process is critical in HVAC developmental activity, since mule cars will be equipped with selected TXV for initial assessment of the system performance.
Technical Paper

Impact of Active-Grille Shutter Position on Vehicle Air-Conditioning System Performance and Energy Consumption in Real World Conditions

2020-04-14
2020-01-0947
Active grille shutter (AGS) in a vehicle provides aerodynamic benefit at high vehicle speed by closing the front-end grille opening. At the same time this causes lesser air flow through the cooling module which includes the condenser. This results in higher refrigerant pressure at the compressor outlet. Higher head pressure causes the compressor to work more, thereby possibly negating the aerodynamic benefits towards vehicle power consumption. This paper uses a numerical method to quantify the compressor power consumed in different scenarios and assesses the impact of AGS closure on total vehicle energy consumption. The goal is to analyze the trade-off between the aerodynamic performance and the compressor power consumption at high vehicle speeds and mid-ambient conditions. These so called real world conditions represent highway driving at mid-ambient temperatures where the air-conditioning (AC) load is not heavy.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Technical Paper

Measurement of Aluminum Edge Stretching Limit Using 3D Digital Image Correlation

2015-04-14
2015-01-0594
This paper introduces an industrial application of digital image correlation technique on the measurement of aluminum edge stretching limit. In this study, notch-shape aluminum coupons with three different pre-strain conditions are tested. The edge stretching is proceeded by standard MTS machine. A dual-camera 3D Digital Image Correlation (DIC) system is used for the full field measurement of strain distribution in the thickness direction. Selected air brush is utilized to form a random distributed speckle pattern on the edge of sheet metal. A pair of special optical lens systems are used to observe the small measurement edge area. From the test results, it demonstrate that refer to the notched coupon thickness, pre-tension does not affect the fracture limit; refer to the virgin sheet thickness, the average edge stretch thinning limits show a consistent increasing trend as the pre-stretch strain increased.
Technical Paper

New Half Shaft Bench Test Methodology for NVH Characterization

2019-06-05
2019-01-1558
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
X