Refine Your Search

Topic

Author

Search Results

Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

A New Measurement of Aluminum Alloy Edge Stretching Limit Based on Digital Image Correlation Method

2016-04-05
2016-01-0417
In Aluminum Alloy, AA, sheet metal forming, the through thickness cracking at the edge of cut out is one of the major fracture modes. In order to prevent the edge cracking in production forming process, practical edge stretch limit criteria are needed for virtual forming prediction and early stamping trial evaluations. This paper proposes new methods for determining the edge stretching limit of the sheet coupons, with and without pre-stretching, based on the Digital Image Correlation (DIC) technique. A numbers of sets of notch-shaped smaller coupons with three different pre-stretching conditions (near 5%, 10% and fractured) are cut from the prestretched large specimens. Then the notch-shaped smaller coupons are stretched by uniaxial tension up to through edge cracking observed. A dual-camera 3D-DIC system is utilized to measure both coupon face strain and thickness strain in the notch area at the same time.
Technical Paper

A Study of Influence of Suspension on Driveline Torque and Evaluation of Vehicle Anti-Squat/Dive Characteristics Using a Planar Vehicle Dynamics Model

2021-04-06
2021-01-0693
Simplified vehicle dynamics models used to study the driveline durability are typically limited to the longitudinal dynamics and do not account for vertical and pitch dynamics. The influence of suspension on the vehicle ride and handling characteristics is studied extensively in the literature but its impact on the driveline torques is often not considered. In this paper, an effort is made to investigate the influence of suspension compliance on the driveline torque using a planar (longitudinal, pitch and vertical) vehicle dynamics model. An AWD vehicle is studied to understand its impact on the torque levels of both axles (primary and secondary). Subsequently the planar dynamics is explored in the context of anti-squat/anti-dive suspension. The primary focus of the paper is to predict the driveline torque.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Technical Paper

Automotive Wheel Metamodeling Using Response Surface Methodology (RSM) Technique

2020-04-14
2020-01-1234
Computational cost plays a major role in the performance of scientific and engineering simulation. This in turn makes the virtual validation process complex and time consuming. In the simulation process, achievement of appropriate level of accurate models as close as physical testing is the root for increase in the computational cost. During preliminary phase of product development, it is difficult to identify the appropriate size, shape and other parameters of the component and they will undergo several modifications in concept and other stages. An approximation model called metamodel or surrogate model has developed for reducing these effects and minimizing the computational cost. Metamodel can be used in the place of actual simulation models. Metamodel can be an algorithm or a mathematical relation representing the relations between input and output parameters.
Journal Article

Axle Efficiency Comparison Method and Spin Loss Benefit of Front Axle Disconnect Systems

2020-04-14
2020-01-1412
There are a variety of test protocols associated with vehicle fuel economy and emissions testing. As a result, a number of test protocols currently exist to measure axle efficiency and spin loss. The intent of this technical paper is to describe a methodology that uses a singular axle efficiency and spin loss procedure. The data can then be used to predict the effects on vehicle FE and GHG for a specific class of vehicles via simulation. An accelerated break-in method using a comparable energy approach has been developed, and can be used to meet the break-in requirements of different vehicle emission test protocols. A “float to equilibrium” sump temperature approach has been used to produce instantaneous efficiency data, which can be used to more accurately predict vehicle FE and GHG, inclusive of Cold CO2. The “Float to Equilibrium” approach and “Fixed Sump Temperature” approach has been compared and discussed.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

Effect of Surface Roughness on Tribological and NVH Behaviour of Brake System

2024-04-09
2024-01-2732
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
Journal Article

Further Analyses on Prediction of Automotive Spinning Wheel Flowfield with Full Width Moving Belt Wind Tunnel Results

2017-03-28
2017-01-1519
Pickup trucks are designed with a taller ride height and a larger tire envelope compared to other vehicle types given the duty cycle and environment they operate in. These differences play an important role in the flow field around spinning wheels and tires and their interactions with the vehicle body. From an aerodynamics perspective, understanding and managing this flow field are critical for drag reduction, wheel design, and brake cooling. Furthermore, the validation of numerical simulation methodology is essential for a systematic approach to aerodynamically efficient wheel design as a standard practice of vehicle design. This paper presents a correlation the near-wheel flow field for both front and rear spinning wheels with two different wheel designs for a Ram Quad Cab pick-up truck with moving ground. Twelve-hole probe experimental data obtained in a wind tunnel with a full width belt system are compared to the predictions of numerical simulations.
Journal Article

Influence of Automatic Engine Stop/Start Systems on Vehicle NVH and Launch Performance

2015-06-15
2015-01-2183
Integration of automatic engine Stop/Start systems in “conventional” drivetrains with 12V starters is a relatively cost-effective measure to reduce fuel consumption. Therefore, automatic engine Stop/Start systems are becoming more prevalent and increasing market share of such systems is predicted. A quick, reliable and consistent engine start behavior is essential for customer acceptance of these systems. The launch of the vehicle should not be compromised by the Stop/Start system, which implies that the engine start time and transmission readiness for transmitting torque should occur within the time the driver releases the brake pedal and de-presses the accelerator pedal. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Hence, the engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
Technical Paper

Measure of Forming Limit Strain on the Aluminum Sheets Passed Through Draw-Bead by Digital Image Correlation

2015-04-14
2015-01-0598
Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
X