Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Multiple 3D-DIC Systems for Measuring the Displacements and Strains of an Engine Exhaust Manifold

2020-04-14
2020-01-0540
In this study, a unique multi-camera three-dimensional digital image correlation (3D-DIC) system was designed and applied to an engine dynamometer cell to measure the displacement and strain of the exhaust manifold while an engine was running in a durability test. In the engine dynamometer cell, the ambient temperature varies from 25°C to 80°C~100°C cyclically and the exhaust manifold experiences high temperatures up to 900°C with high frequency vibrations. In order to obtain reliable data under such conditions, two 3D-DIC systems were designed and set up in the engine dynamometer. One is a high-speed 3D-DIC system, consisting of cameras with a sampling rate of 1250 frames per second. It was used to measure the local displacement of the bolted joint in the exhaust manifold. The high-speed measurement system is able to record the behavior of the bolt during the thermal cycles.
Technical Paper

Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni

2016-04-05
2016-01-0421
This research studies the transformation kinetics of austempered ductile iron (ADI) with and without nickel as the main alloying element. ADI has improved mechanical properties compared to ductile iron due to its ausferrite microstructure. Not only can austempered ductile iron be produced with high strength, high toughness and high wear resistance, the ductility of ADI can also be increased due to high carbon content austenite. Many factors influence the transformation of phases in ADI. In the present work, the addition of nickel was investigated based on transformation kinetics and metallography observation. The transformation fractions were determined by Rockwell hardness variations of ADI specimens. The calculation of transformation kinetics and activation energy using the “Avrami Equation” and “Arrhenius Equation” is done to describe effects of nickel alloy for phase reactions.
X