Refine Your Search

Topic

Author

Search Results

Technical Paper

3D Simulation Models Simplified to 2D Planar/Axisymmetric Problems in Automotive Structures

2016-04-05
2016-01-0397
In automotive FEA analysis, there are many components or assemblies which can be simplified to two-dimensional (2D) plane or axisymmetric analytical problems instead of three-dimensional (3D) simulation models for quick modeling and efficient analysis to meet the timing in the design development process, especially in the advanced design phase and iteration studies. Even though some situations are not perfectly planar or axisymmetric problems, they may still be approximated in 2D planar or axisymmetric models, achieving results accurate enough to meet engineering requirements. In this paper, the authors have presented and summarized several complex 3D analytical situations which can be replaced by simplified plane axisymmetric models or 2D plane strain analytical models.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
There are many noise sources from the vehicle fuel system to generate noise inside a vehicle. Among them, the pressure pulsation due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system at engine idle condition is presented. First, the interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise is exhibited. The problem frequency ranges of the pulse noise were identified.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Technical Paper

Aerodynamic Drag of a Vehicle and Trailer Combination in Yaw

2017-03-28
2017-01-1540
Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
Technical Paper

Analysis of the Effect of Heat Pipes on Enhancement of HEV/PHEV Battery Thermal Management

2021-04-06
2021-01-0219
Thermal management of lithium-Ion battery (LIB) has become very critical issue in recent years. One of the challenges for the design and packaging of the battery is to maintain the battery temperature within acceptable ranges and also reduce temperature gradients within the battery cells. Controlling the battery temperature is essential for the battery performance and the long-term battery life. Increased difference between battery cell temperatures can lead to non-uniform charging and non-uniform ageing of battery cells. The purpose of this paper is to investigate available technologies using heat pipes as a means of improving battery thermal management. Several studies have been conducted regarding the effect of heat pipes on battery temperature. However, in this paper we present a comprehensive study of heat pipes effects through transient analysis of a complete vehicle thermal model.
Technical Paper

Application of Simplified Load Path Models for BIW Development

2019-04-02
2019-01-0614
Simplified load path models (SLMs) of the body in white (BIW) are an important tool in the body structure design process providing a highly flexible, idealized concept model to explore the design space through load path evaluation, material selection, and section optimization with rapid turnaround. In partnership with Altair Engineering, the C123 process was used to create and optimize SLMs for BIW models at FCA US LLC. These models help structures engineers to develop efficient load paths, sections, and joints for improved NVH as ultra-high-strength steels enable thinner gauges throughout the body structure. A few key differences in the SLM modeling method are contrasted to previous simplified BIW modeling methods. One such example is the parameterization of cross sections through response surface models rather than using contemporary finite element descriptions of arbitrary cross sections.
Journal Article

Assessing the Impact of Lubricant and Fuel Composition on LSPI and Emissions in a Turbocharged Gasoline Direct Injection Engine

2020-04-14
2020-01-0610
Downsized turbocharged gasoline direct injection (TGDI) engines with high specific power and torque can enable reduced fuel consumption in passenger vehicles while maintaining or even improving on the performance of larger naturally aspirated engines. However, high specific torque levels, especially at low speeds, can lead to abnormal combustion phenomena such as knock or Low-Speed Pre-Ignition (LSPI). LSPI, in particular, can limit further downsizing due to resulting and potentially damaging mega-knock events. Herein, we characterize the impacts of lubricant and fuel composition on LSPI frequency in a TGDI engine while specifically exploring the correlation between fuel composition, particulate emissions, and LSPI events. Our research shows that: (1) oil composition has a strong impact on LSPI frequency and that LSPI frequency can be reduced through a carefully focused approach to lubricant formulation.
Technical Paper

Comparison of Direct and Metamodel Based Optimization in the Coolant Jacket Design of an IC Engine

2021-04-06
2021-01-0841
This paper focuses on the conjugate heat transfer analysis of an I4 engine, and discusses optimization of the coolant passages in engine coolant jackets. Direct Optimization approach integrates an optimizer with the numerical solver. This method of optimization is compared with a metamodel-based optimization in which a metamodel is generated to aid in finding an optimal design. The direct optimization and metamodel approaches are compared in terms of their accuracy, and execution time.
Technical Paper

Development of a Computational Algorithm for Estimation of Lead Acid Battery Life

2020-04-14
2020-01-1391
The performance and durability of the lead acid battery is highly dependent on the internal battery temperature. The changes in internal battery temperatures are caused by several factors including internal heat generation and external heat transfer from the vehicle under-hood environment. Internal heat generation depends on the battery charging strategy and electric loading. External heat transfer effects are caused by customer duty cycle, vehicle under-hood components and under-hood ambient air. During soak conditions, the ambient temperature can have significant effect on battery temperature after a long drive for example. Therefore, the temperature rise in a lead-acid battery must be controlled to improve its performance and durability. In this paper a thermal model for lead-acid battery is developed which integrates both internal and external factors along with customer duty cycle to predict battery temperature at various driving conditions.
Technical Paper

Estimates of the Convective Heat-Transfer Coefficients for Under-Hood and Under-Body Components

2019-04-02
2019-01-0149
In this paper we investigate the application of time constant to estimate the external heat transfer coefficient (h) around specific vehicle components. Using this approach, a test sample in the form of a steel plate is placed around the component of interest. A step change is applied to air temperature surrounding the sample. The response of the sample temperature can be analyzed and the heat transfer coefficient can therefore be calculated. Several test samples were installed at several locations in the vehicle under-hood and underbody. A series of vehicle tests were designed to measure the time constant around each component at various vehicle speeds. A correlation between estimated heat transfer coefficients and vehicle speed was generated. The developed correlations and the measured component ambient temperatures can be readily used as input for thermal simulation tools. This approach can be very helpful whenever CFD resources may not be available.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
Technical Paper

Integrated Engine Performance and Valvetrain Dynamics Simulation

2016-04-05
2016-01-0483
Valvetrain dynamics modeling and engine combustion modeling are often carried out independently. As a result, the interaction between these two physical responses may not be accurately assessed. The objective of this work is to understand the impact that robust valve timing simulations, implemented using a fully coupled valve train dynamics and engine performance model, have on engine performance prediction. The integrated simulation and detailed technical approach are discussed through the presentation of an example implementation. An I4 engine model is developed in which engine performance and valvetrain dynamics modeling are coupled. A benefit of this multi-physics approach is that it reduces reliance on empirically derived estimates of valve lash in favor of physical modeling of engine valvetrain dynamics that predicts lash during engine performance modeling.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Technical Paper

Numerical Modeling of Direct-Oil-Cooled Electric Motor for Effective Thermal Management

2020-04-14
2020-01-1387
Electric motor performance is primarily limited by the amount of heat that can be effectively dissipated. Recent developments in electric motor thermal management have been employing direct oil spray/splash based cooling for improved performance. Simulation of two phase (air and oil) flow and associated heat transfer for such applications has been computationally challenging, hence not fully explored in the literature. This paper describes a numerical study in which two phase flow and heat transfer within a direct-oil-cooled electric motor are analyzed using CFD software. A detailed temperature field of all the motor components under different operating conditions is generated using a conjugate heat transfer approach. Numerical results are compared with the temperature measurements at discrete locations in motor.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
X