Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

A Computational Aeroacoustic Study of Windshield Wiper Influence on Passenger Vehicle Greenhouse Windnoise

2014-06-30
2014-01-2051
This paper presents an approach to numerically simulate greenhouse windnoise. The term “greenhouse windnoise” here describes the sound transferred to the interior through the glass panels of a series vehicle. Different panels, e.g. the windshield or sideglass, are contributing to the overall noise level. Attached parts as mirrors or wipers are affecting the flow around the vehicle and thus the pressure fluctuations which are acting as loads onto the panels. Especially the wiper influence and the effect of different wiper positions onto the windshield contribution is examined and set in context with the overall noise levels and other contributors. In addition, the effect of different flow yaw angles on the windnoise level in general and the wiper contributions in particular are demonstrated. As computational aeroacoustics requires accurate, highly resolved simulation of transient and compressible flow, a Lattice-Boltzmann approach is used.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Technical Paper

A Computational Approach to Evaluate the Vehicle Interior Noise from Greenhouse Wind Noise Sources - Part II

2011-05-17
2011-01-1620
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻ 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

A Domain-Centralized Automotive Powertrain E/E Architecture

2021-04-06
2021-01-0786
This paper proposes a domain-centralized powertrain E/E (electrical and/or electronic) architecture for all-electric vehicles that features: a powerful master controller (domain controller) that implements most of the functionality of the domain; a set of smart actuators for electric motor(s), HV (High Voltage) battery pack, and thermal management; and a gateway that routes all hardware signals, including digital and analog I/O, and field bus signals between the domain controller and the rest of the vehicle that is outside of the domain. Major functional safety aspects of the architecture are presented and a safety architecture is proposed. The work represents an early E/E architecture proposal. In particular, detailed partitioning of software components over the domain’s Electronic Control Units (ECUs) has not been determined yet; instead, potential partitioning schemes are discussed.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool Down Performance

2018-04-03
2018-01-0786
The front-end air flow conditions have a substantial impact on the cool down performance of a vehicle Heating, Ventilation and Air-Conditioning (HVAC) system. The performance of a mobile HVAC system is analyzed by conducting tests on the vehicle in a drive cell, subjecting it to different drive cycles. This now can be done virtually using system level simulation or one-dimensional (1D) tools. Target values for condenser air inlet velocity and temperature for these HVAC performance focused drive cycles needs to be established during the development phase to meet the cool down functional objectives of the vehicle. Thus, in the early stages of development, 1D tools play a major role. Condenser air flow should be sufficient and the temperature should be as low as possible at different vehicle operating conditions to have good air-conditioning (AC) performance.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Journal Article

A Simulation Tool for Calculation of Engine Thermal Boundary Conditions

2022-03-29
2022-01-0597
Reducing emissions and the carbon footprint of our society have become imperatives requiring the automotive industry to adapt and develop technologies to strive for a cleaner sustainable transport system and for sustainable economic prosperity. Electrified hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and range extender powertrains provide potential solutions for reducing emissions, but they present challenges in terms of thermal management. A key requirement for meeting these challenges is accurately to predict the thermal loading and temperatures of an internal combustion engine (ICE) quickly under multiple full-load and part-load conditions. Computational Fluid Dynamics (CFD) and thermal survey database methods are used to derive thermal loading of the engine structure and are well understood but typically only used at full-load conditions.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Journal Article

A Thermomechanical Fatigue Analysis on a Ductile Cast Iron Exhaust Manifold

2018-04-03
2018-01-1215
An engine exhaust manifold undergoes repeated thermal expansion and contraction due to temperature variation. Thermomechanical fatigue (TMF) arises due to the boundary constraints on thermal expansion so that mechanical strain is introduced. Therefore, TMF evaluation is very important in engine design. In this work, the mechanical properties important for TMF assessment and modeling of a silicon (Si)- and molybdenum (Mo)-containing ductile cast iron used for exhaust manifold have been evaluated. Tensile, creep, isothermal low cycle fatigue (LCF), and TMF tests have been conducted. Parameters for material modeling, such as the viscoplastic constitutive model and the Neu-Sehitoglu TMF damage model, have been calibrated, validated, and used to evaluate the TMF life of the exhaust manifold.
X