Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison between Combustion, Performance and Emission Characteristics of JP-8 and Ultra Low Sulfur Diesel Fuel in a Single Cylinder Diesel Engine

2010-04-12
2010-01-1123
JP-8 is an aviation turbine engine fuel recently introduced for use in military ground vehicle applications and generators which are mostly powered by diesel engines. Many of these engines are designed and developed for commercial use and need to be adapted for military applications. This requires more understanding of the auto- ignition and combustion characteristics of JP-8 under different engine operating conditions. This paper presents the results of a comparative analysis of an engine operation using JP-8 and ultra low sulfur diesel fuel (ULSD). Experiments were conducted on 0.42 liter single cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The results indicate that the distillation properties of fuel have an effect on its vaporization rate. JP-8 evaporated faster and had shorter ignition delay as compared to ULSD. The fuel economy with JP-8 was better than ULSD.
Technical Paper

Effect of EGR on Autoignition, Combustion, Regulated Emissions and Aldehydes in DI Diesel Engines

2002-03-04
2002-01-1153
In view of the new regulations for diesel engine emissions, EGR is used to reduce the NOx emissions. Diluting the charge with EGR affects the autoignition, combustion as well as the regulated and unregulated emissions of diesel engines, under different operating conditions. This paper presents the results of an investigation on the effect of EGR on the global activation energy and order of the autoignition reactions, premixed and mixing-controlled combustion fractions, the regulated (unburned hydrocarbons, NOx, CO and particulates), aldehydes, CO2 and HC speciation. The experiments were conducted on two different direct injection, four-stroke-cycle, single-cylinder diesel engines over a wide range of operating conditions and EGR ratios.
X