Refine Your Search

Topic

Author

Search Results

Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector

2015-04-14
2015-01-0949
Compared to conventional injection techniques, Gasoline Direct Injection (GDI) has a lot of advantages such as increased fuel efficiency, high power output and low emission levels, which can be more accurately controlled. Therefore, this technique is an important topic of today's injection system research. Although the operating conditions of GDI injectors are simpler from a numerical point of view because of smaller Reynolds and Weber numbers compared to Diesel injection systems, accurate simulations of the breakup in the vicinity of the nozzle are very challenging. Combined with the complications of experimental techniques that could be applied inside the nozzle and at the nozzle exit, this is the reason for the lack of understanding the primary breakup behavior of current GDI injectors.
Technical Paper

A Numerical Investigation of Potential Ion Current Sensor Applications in Premixed Charge Compression Ignition Engine

2022-09-16
2022-24-0041
Simultaneous reduction of engine pollutants (e.g., CO, THC, NOx, and soot) is one of the main challenges in the development of new combustion systems. Low-temperature combustion (LTC) concepts in compression ignition (CI) engines like premixed charged compression ignition (PCCI) make use of pre-injections to create a partly homogenous mixture. In the PCCI combustion regime, a direct correlation between injection and pollutant formation is no longer present because of long ignition delay times. In LTC combustion systems, the in-cylinder pressure sensor is normally used to help the combustion control. However, to allow the control of PCCI engines, new sensor concepts are investigated to obtain additional information about the PCCI combustion for advanced controller structures. In LTC combustion systems like gasoline-controlled autoignition (GCAI) concepts, the application of ion current sensors enables additional monitoring of the combustion process with real-time capability.
Technical Paper

A Reduced Kinetic Reaction Mechanism for the Autoignition of Dimethyl Ether

2010-10-25
2010-01-2108
A reduced kinetic reaction mechanism for the autoignition of dimethyl ether is presented in this paper. Dimethyl ether has proven to be one of the most attractive alternatives to traditional fossil fuels for compression ignition engines. It can either be produced from biomass or from fossil oil. For dimethyl ether, Fischer et al. (Int. J.Chem. Kinet. 32 ( 12 ) (2000) 713-740) proposed a detailed reaction mechanism consisting of 79 species and 351 elementary reactions. In the present work, this detailed mechanism is systematically reduced to 31 species and 49 reactions. The reduced mechanism is discussed in detail with special emphasis on the high temperature thermal decomposition of dimethyl ether and on the fuel specific depleting reactions, which produce the methoxymethyl radical. In addition, a reaction pathway analysis for low temperature combustion is applied, where hydroperoxy-methylformate is found to be the dominating parameter for the low temperature regime.
Technical Paper

A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition

2016-04-05
2016-01-0754
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle.
Journal Article

Advanced Fuel Formulation Approach using Blends of Paraffinic and Oxygenated Biofuels: Analysis of Emission Reduction Potential in a High Efficiency Diesel Combustion System

2016-10-17
2016-01-2179
This work is a continuation of earlier results presented by the authors. In the current investigations the biofuels hydrogenated vegetable oil (HVO) and 1-octanol are investigated as pure components and compared to EN 590 Diesel. In a final step both biofuels are blended together in an appropriate ratio to tailor the fuels properties in order to obtain an optimal fuel for a clean combustion. The results of pure HVO indicate a significant reduction in CO-, HC- and combustion noise emissions at constant NOX levels. With regard to soot emissions, at higher part loads, the aromatic free, paraffinic composition of HVO showed a significant reduction compared to EN 590 petroleum Diesel fuel. But at lower loads the high cetane number leads to shorter ignition delays and therefore, ignition under richer conditions.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Technical Paper

An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and Gasoline

2017-11-07
2017-36-0357
The possibility to vary compression ratio offers a new degree of freedom that may enable so far not exploited benefits for the combustion process especially for highly boosted spark ignited engines. Numerous approaches to enable a variable compression ratio (VCR) have been tried and tested in the past. Nevertheless, none of these systems reached series production because of several reasons, ranging from too much complexity and moveable parts to deep modification required on existing engine architectures and manufacturing lines. Instead, the approach of a variable length conrod (VCR conrod) could be the solution for integration in almost any type of engine with minor modifications. It is then considered by several OEMs as a promising candidate for midterm series production. This paper shows, firstly, a discussion of the benefits of a variable compression ratio system.
Journal Article

Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020-09-15
2020-01-2021
To achieve the strict legislative restrictions for emissions from combustion engines, vast improvements in engine emissions and efficiency are required. Two major impacting factors for emissions and efficiency are the reliable generation of an effective mixture before ignition and a fast, stable combustion process. While the mixture of air and injected fuel is generated by highly three-dimensional, time-dependent flow phenomena during the intake and compression stroke, the turbulent flame propagation is directly affected by the turbulence level in the flow close to the advancing flame front. However, the flow field in the combustion chamber is highly turbulent and subject to cycle-to-cycle variations (CCV). To understand the fundamental mechanisms and interactions, 3D flow measurements with combined high spatial and temporal resolution are required.
Technical Paper

Assessment of Different Included Spray Cone Angles and Injection Strategies for PCCI Diesel Engine Combustion

2017-03-28
2017-01-0717
For compliance with legislative regulations as well as restricted resources of fossil fuel, it is essential to further reduce engine-out emissions and increase engine efficiency. As a result of lower peak temperatures and increased homogeneity, premixed Low-Temperature Combustion (LTC) has the potential to simultaneously reduce nitrogen oxides (BSNOx) and soot. However, LTC can lead to higher emissions of unburnt total hydrocarbons (BSTHC) and carbon monoxide (BSCO). Furthermore, losses in efficiency are often observed, due to early combustion phasing (CA50) before top dead center (bTDC). Various studies have shown possibilities to counteract these drawbacks, such as split-injection strategies or different nozzle geometries. In this work, the combination of both is investigated. Three different nozzle geometries with included spray angles of 100°, 120°, and 148° and four injection strategies are applied to investigate the engine performance.
Technical Paper

Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models

2017-09-04
2017-24-0007
Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Journal Article

Automated Verification and Validation Methods for Transmission Control Software

2015-04-14
2015-01-0163
With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
Journal Article

Boundary Lubrication of Biofuels and Similar Molecules

2017-06-29
2017-01-9376
The cluster of excellence “Tailor-Made Fuels from Biomass” (TMFB) at RWTH Aachen University seeks to identify and investigate new potential biofuels and their production routes. To ensure a safe handling in common-rail systems the lubricity of future biofuels is part of the investigations. To further deepen the understanding of the behaviour of such fluids in the regime of boundary lubrication a group of twelve potential biofuels and systematically derived fluids was investigated by a modified version of the standardised High Frequency Reciprocating Rig test procedure for Diesel lubricity. Insufficient lubricity is observed for most biofuels whereas linear molecules with polar head groups provide good or very good lubrication. For all studied groups longer molecules provide better lubricities. The position of the functional group significantly influences the overall lubricity and impact of the carbon chain length.
Journal Article

CFD Simulation of Oil Jets for Piston Cooling Applications Comparing the Level Set and the Volume of Fluid Method

2019-04-02
2019-01-0155
A new CFD simulation model and methodology for oil jet piston cooling has been developed using the modern level set approach. In contrast to the widely used volume of fluid (VOF) method, the level set approach explicitly tracks the interface surface between oil and air, using an additional field equation. The method has been extensively tested on two- and three-dimensional examples using results from literature for comparison. Furthermore, several applications of oil jet piston cooling on Ford engines have been investigated and demonstrated. For example, three-dimensional simulations of piston cooling nozzle jets on a diesel engine have been calculated and compared to test-rig measurements. Laminar jets, as well as jets with droplets and fully atomized jets, have been simulated using realistic material properties, surface tension, and gravity.
Technical Paper

Characterisation of Fuel Ignition under Partly Homogeneous Diesel Combustion

2014-04-01
2014-01-1280
Legislative restrictions on the currently limited exhaust gas components and the future CO2 emissions limits have led to intensive research in the field of alternative fuels and innovative combustion approaches. Increased homogeneity of air-fuel mixture through advanced injection is one combustion approach, which potentially reduces engine-out nitrogen oxide and particulate emissions, with good fuel consumption in certain load ranges. Ignition characteristics under homogenous combustion conditions differ from those under heterogeneous conditions. Among other reasons, this is due to the increased role of low temperature chemistry with increasing homogeneity. The ignition behaviour of diesel fuels is characterised by the Cetane number (CN), which is, however, determined at significant higher temperatures than those prevalent during ignition under homogenous combustion. As a result, its relevance as a fuel characteristic number requires evaluation.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Comparative Study to Assess the Potential of Different Exhaust Gas Aftertreatment Concepts for Diesel Powered Ultra-Light Commercial Vehicle Applications in View of Meeting BS VI Legislation

2017-01-10
2017-26-0128
Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
X