Refine Your Search

Topic

Author

Search Results

Journal Article

A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar

2019-04-02
2019-01-0134
The performance of environment perceiving sensors such as e.g. lidar, radar, camera and ultrasonic sensors is safety critical for automated driving vehicles. Therefore, one has to assess the sensors’ performance to assure the automated driving system’s safety. The performance of these sensors is however to some degree sensitive towards adverse weather conditions. A challenge is to quantify the effect of adverse weather conditions on the sensor’s performance early in the development of an automated driving system. This challenge is addressed in this work for lidar sensors. The lidar equation was previously employed in this context to derive estimates of a lidar’s maximum range in different weather conditions. In this work, we present a stochastic simulation framework based on a probabilistic extension of the lidar equation, to quantify the effect of adverse rainfall conditions on a lidar’s raw detection performance.
Technical Paper

Acoustic Investigations of HVAC Systems in Vehicle

2012-04-16
2012-01-1185
New power train concepts in the automobile industry will decisively change the familiar car acoustics. Secondary acoustic noise sources will be unmasked and dominate the driver's sound experience. The most important secondary noise source is the air conditioning (AC) system. Before a favorable AC sound can actively be designed, it is necessary to identify the acoustic noise sources and find means to influence them. This paper focuses on the AC outlet module which is, apart from the control unit, the only part visible to the customer. Typical acoustic spectra of flowed-through outlets show a characteristic tonality at about 3000 Hz. The knowledge of its aeroacoustic source mechanisms, the inherent implications for the customer and corrective measures especially in automobile surroundings has been limited so far. To analyze this phenomenon in detail, a simplified model outlet that shows the basic aeroacoustic behavior of a series production outlet was constructed and investigated.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

Active Suppression of Buffeting at the Audi AAWT: Operational Experiences and Enhancements of the Control Scheme

2004-03-08
2004-01-0804
In order to suppress the well-documented low frequency pressure fluctuations in open jet wind tunnels, termed ‘wind tunnel buffeting’, an Active Resonance Control (ARC) System was implemented in the Audi aero-acoustic wind tunnel several years ago. This ARC-Sys-tem reduces the periodic pressure fluctuations by up to 23 dB and completely eliminates the periodic velocity fluctuations using a simple feedback control scheme. To set up the ARC system in practice, the system's parameters are optimised once for each critical flow velocity, when the vortex shedding frequency coincides with an acoustic resonance mode of the wind tunnel. Due to the fact that both frequency and amplitude of the excited resonances not only depend on flow velocity but also on other parameters such as collector position and test-car geometry, the system has to be adjusted with regard to each of these cases.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Aspects of Shift Quality With Emphasis on Powertrain Integration and Vehicle Sensitivity

2005-05-16
2005-01-2303
A customer's perception of vehicle quality very closely parallels the noise vibration and harshness (NVH) characteristics of the vehicle. Consequently, automotive manufacturers are investing significant resources into optimizing the NVH performance of their vehicles. Automatic transmission shift quality is one of a number of attributes where NVH optimization is critical towards providing customers with a pleasant driving experience. This paper addresses various aspects of understanding, quantifying and optimizing a vehicle's shift quality characteristics. Following an introductory treatment of automatic transmission planetary gear systems, the interaction between the engine/transmission system during shifts is summarized. Various shift quality metrics used to quantify a vehicle's response and its sensitivity to transient inputs are provided. Approaches to manage the engine torque output during the shifts are discussed.
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Technical Paper

Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems

2007-04-16
2007-01-1488
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. The addition of a second microcontroller and the associated support circuitry that is required adds to the overall costs of the ECU, increases the size and creates significant system complexity.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Journal Article

Comparative Analysis of Tire Evaluation Methods for an indirect Tire Pressure Monitoring System (iTPMS)

2015-04-14
2015-01-1519
Starting from the USA and followed by the European Union, legal requirements concerning “Tire Pressure Monitoring Systems” (TPMS) for passenger cars and light trucks will be introduced in China as well and therefore in the third of the three largest automobile markets worldwide. Changes of pressure dependent physical tire properties such as dynamic roll radius and a certain tire eigenfrequency, which are included in the ESC-wheel speed signals, indicates pressure loss in an indirect manner. Systems with corresponding working principles are called “indirect Tire Pressure Monitoring System” (iTPMS). Since the tire is a structural element with varying characteristics according to the design parameters, the roll radius and frequency behavior due to pressure loss is variable as well. As a consequence, tires have to be evaluated regarding there compatibility to iTPMS during the vehicle development process.
Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Journal Article

Damping A Passenger Car With A Gyroscopic Damper System

2015-04-14
2015-01-1506
Today, body vibration energy of passenger cars gets dissipated by linear working shock absorbers. A new approach substitutes the damper of a passenger car by a cardanic gimbaled flywheel mass. The constructive design leads to a rotary damper in which the vertical movement of the wheel carrier leads to revolution of the rotational axis of the flywheel. In this arrangement, the occurring precession moments are used to control damping moments and to store vibrational energy. Different damper characteristics are achieved by different induced precession. From almost zero torque output to high torque output, this damper has a huge spread. Next to the basic principal, in this paper an integration in the chassis, including a constructive proposal is shown. A conflict with high torque and high angular velocity leads to a special design. Moreover concepts to deal with all vehicle situations like yawing, rolling and pitching are shown.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

Diesel Engine Cold Start Noise Improvement

2005-05-16
2005-01-2490
The European as well as U.S. market share of modern Diesel engines has increased significantly in recent years, due to their excellent torque and performance behavior combined with low fuel consumption. The overall improved noise and vibration behavior of modern Diesel engines has also contributed to this trend. Despite overall improvements in Diesel engine noise and vibration, certain aspects of Diesel engines continue to present significant challenges. One such issue is the presence of Diesel knocking that is prevalent during cold start and warm-up conditions. This paper discusses a technique used to optimize the cold start noise behavior of modern Diesel engines. The methods used in this study are based on optimizing the engine calibration to improve the vehicle interior and exterior (engine) noise, even at low ambient temperatures.
X