Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model based Difference Approach and Change Impact Rules Language to manage Variability and Change Requests in Safety Critical Automotive Functions

2016-04-05
2016-01-0125
Automotive engineering processes are dynamic, iterative and driven by changes. Reasons for changes on development artifacts are manifold, but the result is a new evolution step which may influence all, some, or just a single development artifact. Consequently, research on impact analysis put forth approaches to assess the adverse effects of changes. However, understanding and implementing functional changes and its consequences in the safety domain is often aggravated by dependencies between different types of development artifacts, scattered in various (tool) formats. Safety properties may change depending on the type of a modification. Thereby, connected analyses like fault trees, Failure Modes and Effects Analysis (FMEA), and safety concepts cannot be reused easily if the artifacts on which they are based on are affected by changes. In this paper we suggest a new difference analysis approach which allows a (semi-)automated comparison of safety work products based on models.
Technical Paper

A New Approach for Prediction of Crankshaft Stiffness and Stress Concentration Factors

2010-04-12
2010-01-0949
This paper introduces a new approach based on a statistical investigation and finite element analysis (FEA) methodology to predict the crankshaft torsional stiffness and stress concentration factors (SCF) due to torsion and bending which can be used as inputs for simplified crankshaft multibody models and durability calculations. In this way the reduction of the development time and effort of passenger car crankshafts in the pre-layout phase is intended with a least possible accuracy sacrifice. With the designated methodology a better approximation to reality is reached for crank torsional stiffness and SCF due to torsion and bending compared with the empirical approaches, since the prediction does not depend on the component tests with limited numbers of specimen, as in empirical equations, but on various FE calculations.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Analytical and Empirical Methods for Optimization of Cylinder Liner Bore Distortion

2001-03-05
2001-01-0569
Beside the traditional prediction of stresses and verification by mechanical testing the optimization of cylinder liner bore distortion is one of today's most important topics in crankcase structure development. Low bore distortion opens up potentials for optimizing the piston group. As the piston rings achieve better sealing characteristics in a low deformation cylinder liner, oil consumption and blow-by are reduced. For unchanged oil consumption and blow-by demands, engine friction and subsequently, fuel consumption could be reduced by decreasing the pre-tension of the piston rings. From the acoustical point of view an optimization of piston-slap noise is often based on an optimized bore distortion behavior. Apart from basics to the behavior of liner bore distortion the paper presents advanced analytical and empirical methods for detailed prediction, verification and optimization of bore distortion taking into account the effective engine operation conditions.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Technical Paper

Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems

2007-04-16
2007-01-1488
Electronic Control Units of safety critical systems require constant monitoring of the hardware to be able to bring the system to a safe state if any hardware defects or malfunctions are detected. This monitoring includes memory checking, peripheral checking as well as checking the main processor core. However, checking the processor core is difficult because it cannot be guaranteed that the error will be properly detected if the monitor function is running on a processing system which is malfunctioning. To circumvent this issue, several previously presented monitoring concepts (e.g. SAE#2006-01-0840) employ a second external microprocessor to communicate with the main processor to check its integrity. The addition of a second microcontroller and the associated support circuitry that is required adds to the overall costs of the ECU, increases the size and creates significant system complexity.
Technical Paper

Bayesian Test Design for Reliability Assessments of Safety-Relevant Environment Sensors Considering Dependent Failures

2017-03-28
2017-01-0050
With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Determination of the Cylinder Head Valve Bridge Temperatures in the Concept Phase Using a Novel 1D Calculation Approach

2010-04-12
2010-01-0499
The steady increase of engine power and the demand of lightweight design along with enhanced reliability require an optimized dimensioning process, especially in cylinder head valve bridge, which is progressively prone to cracking. The problems leading to valve bridge cracking are high temperatures and temperature gradients on one hand and high mechanical restraining on the other hand. The accurate temperature estimation at the valve bridge center has significant outcomes for valve bridge thickness and width optimization. This paper presents a 1D heat transfer model, which is constructed through the cross section of the valve bridge center by the use of well known quasi-stationary heat convection and conduction equations and reduced from 3D to 1D via regression and empirical weighting coefficients. Several diesel engine cylinder heads with different application types and materials are used for model setup and verification.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

End-To-End Protection for SIL3 Requirements in a FlexRay Communication System

2008-04-14
2008-01-0112
This paper proposes end-to-end protection mechanisms to be added to a generic FlexRay network in order to achieve fault detection and integrity levels sufficient for a SIL3 fail safe communication system. The mechanisms are derived from the random hardware failure modes to be considered for communication controllers according to IEC 61508. Mechanisms provided by the FlexRay protocol are pointed out. Additional features necessary to fulfil the requirements are discussed. It is shown how to calculate the failure rate probabilities of the CRC used as a safety code with respect to EN 50159.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Experimental and Numerical Investigations on Time-Resolved Flow Field Data of a Full-Scale Open-Jet Automotive Wind Tunnel

2021-04-06
2021-01-0939
One main goal of the automotive industry is to reduce the aerodynamic drag of passenger vehicles. Therefore, a deeper understanding of the flow field is necessary. Time-resolved data of the flow field is required to get an insight into the complex unsteady flow phenomena around passenger vehicles. This data helps to understand the temporal development of wake structures and enables the analysis of the formation of vortical structures. Numerical simulations are an efficient method to analyze the time-resolved data of the unsteady flow field. The analysis of the steady and unsteady numerical data is only relevant for aerodynamic developments in the wind tunnel, if the predicted temporal evolving structures of a passenger vehicle’s simulated flow field correspond to the structures of the flow field in the wind tunnel. In this study, time-resolved measurements of the empty wind tunnel and a notchback passenger vehicle in the wind tunnel are conducted.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Hardware Based Paravirtualization: Simplifying the Co-Hosting of Legacy Code for Mixed Criticality Applications

2013-04-08
2013-01-0186
The increased pressure for power, space, and cost reduction in automotive applications together with the availability of high performance, automotive qualified multicore microcontrollers has lead to the ability to engineer Domain Controller ECUs that can host several separate applications in parallel. The standard automotive constraints however still apply, such as use of AUTOSAR operating system, support for legacy code, hosting OEM supplied code and the ability to determine warranty issues and responsibilities between a group of Tier 1 and Tier 2 vendors who all provide Intellectual Property to the final production ECU. Requirements for safety relevant applications add even more complexity, which in most current approaches demand a reconfiguration of all basic software layers and a major effort to redesign parts of the application code to enable co-existence on the same hardware platform. This paper outlines the conflicting requirements of hosting multiple applications.
Technical Paper

Hydromechanical Sheet Forming (AHU®) -an Innovative Process for the Production of Autobody Parts of New and Further Developed Steel Materials

2000-10-03
2000-01-2674
Hydromechanical sheet forming (AHU®) is an innovative production process with interesting applications, possibilities and potential for the cost-effective manufacture of automobile body parts, particularly with regard to the use of new and improved steels. The targeted, component-specific use of hydro-mechanical sheet forming in automobile construction promises to deliver outstanding results from both a technological and economic point of view.
X