Refine Your Search

Topic

Search Results

Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Journal Article

A Review of Some Cooling Air Flow Measurement Techniques for Model Scale, Full Scale and CFD

2013-04-08
2013-01-0598
Each component of a drive train generates waste heat due to its limited efficiency. This waste heat is usually released to an air flow guided through one or more heat exchangers. So, the realized cooling air volume flow is one important characteristic value during the vehicle development process. This paper presents some of the available techniques for the measurement of cooling air volume flow in the vehicle during the different stages of an aerodynamic development process in model scale and full scale. Additionally, it provides suggestions when comparing these experimental values to CFD results.
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

A Two-Stage Knock Model for the Development of Future SI Engine Concepts

2018-04-03
2018-01-0855
At specific operating conditions, the auto-ignition in the unburnt mixture that precedes the occurrence of knock in conventional SI engines happens in two stages. In a previous publication, the authors demonstrated that the low-temperature heat release significantly influences the auto-ignition behavior of the mixture, thus severely impairing the prediction capabilities of the Livengood-Wu integral that the majority of the commonly used 0D/1D knock models are based on. Consequently, a new two-stage auto-ignition prediction approach for modeling the progress of the chemical reactions was introduced. It was demonstrated that the proposed auto-ignition model predicts the occurrence of two-stage ignition and accurately considers the significant influence of low-temperature heat release on the mixture’s auto-ignition behavior at various operating conditions.
Technical Paper

A Way towards Remarkable Reduction of Co2-Emissions in Motorsports: The CNG-Engine

2011-06-09
2011-37-0006
Until a few years ago the discussion of reduction of CO₂ emissions was completely out of place in motorsports. Nowadays, also in this field, car manufacturers want to investigate different approaches towards a more responsible and sustainable concept. For this target an interesting and feasible solution is the use of methane as an alternative fuel. At the 2009 edition of the 24-hour endurance race of the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by turbocharged CNG engines. The aim was to prove that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued in 2010; this time exclusively with CNG vehicles.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Technical Paper

Efficiency Potential of SI Engines with Gasoline and Methanol: A 0D/1D Investigation

2021-04-06
2021-01-0385
To meet the requirements of strict CO2 emission regulations in the future, internal combustion engines must have excellent efficiencies for a wide operating range. In order to achieve this goal, various technologies must be applied. Additionally, fuels other than gasoline should also be considered. In order to investigate the potential of the efficiency improvement, a SI engine was designed and optimized using 0D/1D methods. Some of the advanced features of this engine model include: High stroke-to-bore-ratio, variable valve timings with Miller cycle, EGR, cylinder deactivation, high turbulence concept, variable compression ratio and extreme downsizing. The fuel of choice was gasoline. With the proper application of technologies, the fuel consumption at the most relevant operating window could be decreased by approximately 10% in comparison to a state-of-the-art spark-ignited direct-injection four-cylinder passenger car engine.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
Technical Paper

Fundamentals of Pressure Trace Analysis for Gasoline Engines with Homogeneous Charge Compression Ignition

2010-10-25
2010-01-2182
Regarding further development of gasoline engines several new technologies are investigated in order to diminish pollutant emissions and particularly fuel consumption. The Homogeneous Charge Compression Ignition (HCCI) seems to be a promising way to reach these targets. Therefore, in the past years there had been a lot of experimental efforts in this field of combustion system engineering. Negative valve overlap with pilot injection before pumping top dead center (PTDC) and an “intermediate” compression and combustion during PTDC, followed by the main injection after PTDC, is one way to realize and to proper control a HCCI operation. For conventional CI and SI combustion the pressure trace analysis (PTA) is a powerful and widely used tool to analyse, understand and optimize the combustion process.
Technical Paper

Improvement of a High-Performance CNG-Engine Based on an innovative Virtual Development Process

2011-09-11
2011-24-0140
Methane as an alternative fuel in motorsports? Actually this solution is well known for the reduction of CO₂ emissions but apparently it does not really awake race feelings. At the 2009 edition of the 24-hour endurance race on the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by innovative turbo-charged CNG engines for the first time. The aim was to prove, that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued also in 2010, this time exclusively with CNG vehicles. Focusing on the CO₂ emission, reclusively the higher hydrogen content of methane which represents the main component of NG leads to a CO₂ reduction during the combustion of about 20% compared to gasoline.
Journal Article

Influence of Binary CNG Substitute Composition on the Prediction of Burn Rate, Engine Knock and Cycle-to-Cycle Variations

2017-03-28
2017-01-0518
Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
Technical Paper

Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels

2021-04-06
2021-01-0381
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation.
Technical Paper

New Criteria for 0D/1D Knock Models to Predict the Knock Boundary for Different Gasoline Fuels

2021-04-06
2021-01-0377
As engine knock limits the efficiency of spark ignition engines and consequently further reduction of CO2 emissions, SI engines are typically designed to operate at the knock boundary. Therefore, a precise knock model is necessary to consider this phenomenon in an engine process simulation. The basis of the introduced 0D/1D knock model is to predict when the unburnt mixture auto-ignites, since auto-ignitions precede knocking events. The knock model further needs to evaluate the auto-ignition, because not every auto-ignition results in engine knock. As the introduced model’s prediction of the auto-ignition onset is already validated at extensive variations of operating conditions, this publication focusses on its evaluation. For this, two new, independent criteria are developed that take the pre-reactions of the unburnt mixture before the start of combustion into account to calculate a respective threshold for the auto-ignition onset at the knock boundary.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

Reduced Model of a Vehicle Cabin for Transient Thermal Simulation

2018-05-30
2018-37-0022
In the proposed work the transient thermal modeling of a vehicle cabin has been performed. Therefore, a reduced model has been developed based on a one-node discretization of the cabin air. The conduction in the solid parts is accounted for by a one-dimensional heat transfer approach, the radiation exchange between the surfaces is based on view factors adopted from a 3D reference and the convective heat transfer from the cabin surfaces to the cabin air is conducted with the help of heat transfer coefficients calculated in a 3D reference simulation. The cabin surface is discretized by planar wall elements, including the outer shell of the cabin and inner elements such as seats. Each wall element is composed of several homogeneous material layers with individual thicknesses. Investigations have been conducted on the temporal and spatial resolution of the layer structure of these wall elements, for the 3D model as well as for the reduced one.
Technical Paper

Simulation of Autoignition, Knock and Combustion for Methane-Based Fuels

2017-10-08
2017-01-2186
Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
X