Refine Your Search

Topic

Search Results

Journal Article

A Review of Some Cooling Air Flow Measurement Techniques for Model Scale, Full Scale and CFD

2013-04-08
2013-01-0598
Each component of a drive train generates waste heat due to its limited efficiency. This waste heat is usually released to an air flow guided through one or more heat exchangers. So, the realized cooling air volume flow is one important characteristic value during the vehicle development process. This paper presents some of the available techniques for the measurement of cooling air volume flow in the vehicle during the different stages of an aerodynamic development process in model scale and full scale. Additionally, it provides suggestions when comparing these experimental values to CFD results.
Journal Article

Active Crosswind Generation and Its Effect on the Unsteady Aerodynamic Vehicle Properties Determined in an Open Jet Wind Tunnel

2018-04-03
2018-01-0722
In this article the unsteady aerodynamic properties of a 25% scale DrivAer notchback model as well as the influence of the wind tunnel environment on the resulting unsteady aerodynamic forces and moments under crosswind excitation are investigated using experimental and corresponding numerical methods. Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) swing® (side wind generator) is used to reproduce the essential properties of natural stochastic crosswind in the open jet test section of the Institute for Internal Combustion Engines and Automotive Engineering (IVK) model scale wind tunnel (MWK). The results show that the test environment of an open jet wind tunnel alters the amplitudes of side force and yaw moment under crosswind excitation when compared to an ideal environment neglecting wind tunnel interference effects.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

Aeroacoustic Vehicle Development Method Considering Realistic Wind Conditions

2023-05-08
2023-01-1123
The aeroacoustic development of vehicles is still mainly carried out in wind tunnels under steady flow conditions, although the real situation is different. However, as discussed in several earlier publications, a vehicle experiences unsteady, turbulent flow on road, which results for example from natural wind, wakes of other vehicles, or obstacles at the roadside in combination with side wind. The resulting temporal variations of the wind noise inside the cabin affect the passengers’ comfort and safety through fatigue. To be able to also consider the unsteady aeroacoustics in the vehicle development process, a comprehensive method has been developed that is presented in full for the first time in this paper. The on-road situation is simulated in a realistic and reproducible manner in the full-scale wind tunnel of the University of Stuttgart by means of an active turbulence generator, developed by FKFS.
Technical Paper

An Efficient Hybrid Computational Process for Interior Noise Prediction in Aeroacoustic Vehicle Development

2023-05-08
2023-01-1120
Numerical methodologies for aeroacoustic analyses are increasingly crucial for car manufacturers to optimize the effectiveness of vehicle development. In the present work, a hybrid numerical tool based on the combination of a delayed detached-eddy simulation and a finite element model, which relies on the Lighthill’s acoustic analogy and the acoustic perturbation equations, is presented. The computational aeroacoustics is performed by the software OpenFOAM and Actran, concerning respectively the CFD and the FEM. The aeroacoustic behavior of the SUV Lamborghini Urus at a cruising speed of 140 km/h has been investigated. The main aerodynamic noise phenomena occurring in the side mirror region in a frequency range up to 5 kHz are discussed. The numerical simulations have been verified against the measurements performed in the aeroacoustic wind tunnel of the University of Stuttgart, operated by FKFS.
Technical Paper

An Investigation of Sub-Synchronous Oscillations in Exhaust Gas Turbochargers

2015-09-06
2015-24-2531
Due to the demands for today's passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
Technical Paper

Beamforming Quantification of Acoustic Transmission Paths for Passenger Vehicles Using a Reciprocal Approach

2023-05-08
2023-01-1090
This paper presents an experimental method for measuring transmission paths from the exterior to the interior of a passenger vehicle using a reciprocal approach: A production vehicle was placed in a semi-anechoic environment; artificial noise sources were placed at the location of the occupant’s ear(s) inside the vehicle and beamforming arrays with a total of more than 300 microphones were used to observe apparent noise sources on the vehicle exterior resulting from transmission paths. This makes it possible to quickly measure transmission paths over the whole vehicle body. One of the motivations for this work is the monitoring of sealing quality on production vehicles. Artificial seal breaches were introduced on the vehicle and a number of excitation signals were assessed to develop a method to detect and localise leakage noise sources.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Development support for the design of distributed control systems in a road vehicle

2000-06-12
2000-05-0117
The development process of electronic control units (ECU) is increasingly supported by different tools. The target-specific code-generation for single micro-controllers becomes a standard technology. Thus a continuous tool support during the whole development cycle is possible. This extends from the specification of the functionality to the implementation of the software on the controller. The next generation of tool support is not only focused on single micro-controllers it also supports the design of systems consisting of different controllers connected via various communication entities. Thus the goal of the tool support is the automatic code-generation for such distributed embedded real-time systems including support of different communication buses (e.g., Controller Area Network CAN, Time Triggered Protocol TTP) and different processor targets.
Journal Article

Experimental Investigation of Automotive Vehicle Transient Aerodynamics with a Reduced-Scale Moving-Model Crosswind Facility

2020-04-14
2020-01-0671
Automotive vehicles operate in complex, transient aerodynamic conditions that can potentially influence their operational efficiency, performance and safety. A moving-model facility combined with a wind-tunnel is an experimental methodology that can be utilized to model some of these transient aerodynamic conditions. This experimental methodology is an alternative to wind-tunnel experiments with additional crosswind generators or actively yawing models, and has the added benefit of modelling the correct relative motion between the vehicle and the ground/infrastructure. Experiments using a VW Golf 7 were performed with a 1:10 scale model at the moving-model facility at DLR, Göttingen and a full-scale, operational vehicle at the BMW Ascheim side-wind facility.
Technical Paper

Experimental Investigation of Low-Frequency Flow Phenomena on the Vehicle Underbody Using Particle Image Velocimetry

2024-04-09
2024-01-2546
The increasing importance of minimizing drag and the absence of an exhaust system result in battery electric vehicles (BEVs) commonly having a very streamlined underbody. Although this shape of underbody is typically characterized by a low acoustic interference potential, significant flow resonance can be observed for certain vehicle configurations and frequencies below 30 Hz. Since the interior of the vehicle can be excited as a Helmholtz resonator, these low-frequency fluctuations result in reduced comfort for the passengers. As preliminary studies have shown, the flow around the front wheel spoilers significantly influences this flow phenomenon. Flow separation occurs at the front-wheel spoilers and at the front wheels. This leads to the generation of vortices which are growing significantly while being transported downstream with the flow. Even small geometric changes to add-on components on the underbody significantly influence both aerodynamics and aeroacoustics.
Technical Paper

Experimental and Numerical Study of the DrivAer Model Aerodynamics

2018-04-03
2018-01-0741
The DrivAer model, a detailed generic open source vehicle geometry, was introduced a few years ago and accepted widely from industry and academia for research in the field of automotive aerodynamics. This paper presents the evaluation of the aerodynamic properties of the 25% scale DrivAer model in both, CFD and in wind tunnel experiment. The results not only include aerodynamic drag and lift but also provide detailed investigations of the flow field around the vehicle. In addition to the available geometries of the DrivAer model, individual changes were introduced created by morphing the geometry of the baseline model. A good correlation between CFD and experiment could be achieved by using a CFD setup including the geometry of the wind tunnel test section. The results give insight into the aerodynamics of the DrivAer model and lead to a better understanding of the flow around the vehicle.
Technical Paper

In the Wake of Others: Unsteady Bonnet Surface Pressure Predictions and Measurements

2020-04-14
2020-01-0676
In use cars often drive through the wakes of other vehicles. It has long been appreciated that this imposes a fluctuating onset flow which can excite a structural response in vehicle panels, particularly the bonnet. This structure must be designed to be robust to such excitation to guarantee structural integrity and maintain customer expectations of quality. As we move towards autonomous vehicles and exploit platoons for drag reduction, this onset flow condition merits further attention. The work reported here comprises both measurements and simulation capturing the unsteady pressure distribution over the bonnet of an SUV following a similar vehicle at high speed and in relatively close proximity. Measurements were taken during track testing and include 48 static measurement locations distributed over the bonnet where the unsteady static pressures were recorded.
Technical Paper

Influence of Open-Jet Effects on Vehicle Wind Tunnel Measurements

2021-02-15
2021-01-5014
The wind tunnel is the standard tool in the development and improvement of vehicle aerodynamics. Usually, automotive wind tunnels contain an open test section, which results in a shear layer developing on the edge of the jet. This shear layer brings instabilities that can lead to resonance effects in the wind tunnel influencing the pressure distribution in the test section. To investigate the resonance effects, the classic wind tunnel corrections were applied to averaged drag measurements recorded in a resonance and nonresonance configuration of the model scale wind tunnel of the University of Stuttgart. The Mercker-Wiedemann-Method shows good compensation for the differing pressure gradients. Pressure measurements on the surface of the DrivAer Notchback model show different separation points on the rear window for measurements in resonance and nonresonance configuration. This means that the resonance effects can influence the separation significantly.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research

2019-04-02
2019-01-0646
Since the introduction of the DrivAer model, an increasing amount of aerodynamic research and CAE method development activities are based on this detailed generic car body. Due to the Open Access nature of the model, it has not only been quickly adopted by academia but also by several automotive OEMs and CAE software developers. The DrivAer has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new sophisticated numerical methods. Within the last decades, the registration number of SUV, especially in Europe, has increased significantly. Among other things, a large cross-sectional area, an increased ground clearance and larger wheels characterize this kind of vehicle. The DrivAer is not capable of depicting this vehicle category. Therefore, there is a demand for an expansion of this generic vehicle concept.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Journal Article

Investigation of Transient Aerodynamic Effects on Public Roads in Comparison to Individual Driving Situations on a Test Site

2020-04-14
2020-01-0670
Natural wind, roadside obstacles, terrain roughness, and traffic influence the incident flow of a vehicle driven on public roads. These transient on-road conditions differ from the idealized statistical steady-state flow environment utilized in CFD simulations and wind tunnel experiments. To understand these transient on-road conditions better, measurements were performed on German public highways and on a test site. A compact car was equipped with a measurement system that is capable of determining the transient airflow around the vehicle and the vehicle’s actual driving state. This vehicle was driven several times on a predefined 200 km long route to investigate different traffic densities on public highways in southern Germany. During the tests the transient incident flow and pressure distribution on the vehicle surface were measured.
Technical Paper

Investigation of the Gas Exchange (Scavenging) on a Single-Scroll Turbocharged Four Cylinder GDI Engine

2016-04-05
2016-01-1024
For scavenging the combustion chamber during the gas exchange, a temporary positive pressure gradient between the intake and the exhaust is required. On a single-scroll turbocharged four cylinder engine, the positive pressure gradient is not realized by the spatial separation of the exhaust manifold (twin-scroll), but by the use of suitable short exhaust valve opening times. In order to avoid any influence of the following firing cylinder onto the ongoing scavenging process, the valve opening time has to be shorter than 180 °CA. Such a short valve opening time has both, a strong influence on the gas exchange at the low-end torque and at the maximum engine power. This paper analyzes a phenomenon, which occurs due to short exhaust valve opening durations and late valve timings: A repeated compression of the burned cylinder charge after the bottom dead center, referred to as “recompression” in this paper.
Journal Article

New FKFS Technology at the Full-Scale Aeroacoustic Wind Tunnel of University of Stuttgart

2015-04-14
2015-01-1557
For many years FKFS has operated the full-scale aeroacoustic wind tunnel of University of Stuttgart. To keep this wind tunnel as one of the most modern ones of its kind, it has again been upgraded significantly. The upgrade improved the aerodynamic as well as the aeroacoustic performance and accelerated the operational processes. Additionally, new innovative features have significantly enlarged the test capabilities. A new patented, modular belt system (FKFS first®) allows high performance measurements for race cars in a 3-belt mode as well as efficient measurements for production vehicle development in a 5-belt mode. The belt system is accompanied by a new, larger turntable and a new under-floor balance which enables high-accuracy measurements of forces and moments also for a high resolution in time. For the elimination of parasitic forces generated at the wheel drive units, a specific correction procedure has been implemented, which is patented, too (FKFS pace®).
X