Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Journal Article

A Quasi-Dimensional Burn Rate Model for Spark-Assisted Compression Ignition (SACI) Combustion

2022-09-16
2022-24-0039
Future combustion engine applications require highest possible energy conversion efficiencies to reduce their environmental impact and be economically competitive. So far, spark-ignition (SI) engine combustion development mostly consisted of optimizing the hemispherical flame propagation combustion method. Thereby, a significant efficiency increase is only achievable in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Simultaneously, researchers have been investigating homogeneous charge compression ignition (HCCI) that achieves higher efficiencies due to its rapid volume reaction combustion and also enables high excess air dilution. However, the combustion is complex to control as it is initiated by auto-ignition (AI) processes. In-cylinder conditions reliably need to be reproduced to prevent damaging pre-ignitions.
Technical Paper

A Quasi-Dimensional Two-System Burn Rate Model for Pre-Chamber-Initiated SACI Combustion

2023-08-28
2023-24-0002
State-of-the-art spark-ignition engines mainly rely on the quasi-hemispherical flame propagation combustion method. Despite significant development efforts to obtain high energy conversion efficiencies while avoiding knock phenomena, achieved indicated efficiencies remain around 35 - 40 %. Further optimizations are enabled by significant excess air dilution or increased combustion speed. However, flammability limits and decreasing flame speeds with increasing air dilution prevent substantial improvements. Pre-Chamber (PC) initiated jet ignition combustion systems improve flame stability and shift flammability limits towards higher dilution levels due to increased turbulence and a larger flame area in the early Main-Chamber (MC) combustion stages. Simultaneously, the much-increased combustion speed reduces knock tendency, allowing the implementation of an innovative combustion method: PC-initiated jet ignition coupled with Spark-Assisted Compression Ignition (SACI).
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Technical Paper

A Two-Stage Knock Model for the Development of Future SI Engine Concepts

2018-04-03
2018-01-0855
At specific operating conditions, the auto-ignition in the unburnt mixture that precedes the occurrence of knock in conventional SI engines happens in two stages. In a previous publication, the authors demonstrated that the low-temperature heat release significantly influences the auto-ignition behavior of the mixture, thus severely impairing the prediction capabilities of the Livengood-Wu integral that the majority of the commonly used 0D/1D knock models are based on. Consequently, a new two-stage auto-ignition prediction approach for modeling the progress of the chemical reactions was introduced. It was demonstrated that the proposed auto-ignition model predicts the occurrence of two-stage ignition and accurately considers the significant influence of low-temperature heat release on the mixture’s auto-ignition behavior at various operating conditions.
Journal Article

Active Crosswind Generation and Its Effect on the Unsteady Aerodynamic Vehicle Properties Determined in an Open Jet Wind Tunnel

2018-04-03
2018-01-0722
In this article the unsteady aerodynamic properties of a 25% scale DrivAer notchback model as well as the influence of the wind tunnel environment on the resulting unsteady aerodynamic forces and moments under crosswind excitation are investigated using experimental and corresponding numerical methods. Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) swing® (side wind generator) is used to reproduce the essential properties of natural stochastic crosswind in the open jet test section of the Institute for Internal Combustion Engines and Automotive Engineering (IVK) model scale wind tunnel (MWK). The results show that the test environment of an open jet wind tunnel alters the amplitudes of side force and yaw moment under crosswind excitation when compared to an ideal environment neglecting wind tunnel interference effects.
Technical Paper

Active Pedestrian Protection - System Development

2004-03-08
2004-01-1604
Pedestrian protection is an upcoming field for research and development. Active pedestrian protection is described from a system perspective. In this view, the development of an active pedestrian protection system is shown. First an overview on statistics and legal requirements is given and the system requirements are discussed. Sensor concepts and realizations are shown, also different test methods and results are explained. FE-simulations to complete and later replace additional tests are developed, after cross check with the experimental results. In combination with the shown actuator concept this leads to a full functioning active pedestrian protection system.
Technical Paper

Aeroacoustic Vehicle Development Method Considering Realistic Wind Conditions

2023-05-08
2023-01-1123
The aeroacoustic development of vehicles is still mainly carried out in wind tunnels under steady flow conditions, although the real situation is different. However, as discussed in several earlier publications, a vehicle experiences unsteady, turbulent flow on road, which results for example from natural wind, wakes of other vehicles, or obstacles at the roadside in combination with side wind. The resulting temporal variations of the wind noise inside the cabin affect the passengers’ comfort and safety through fatigue. To be able to also consider the unsteady aeroacoustics in the vehicle development process, a comprehensive method has been developed that is presented in full for the first time in this paper. The on-road situation is simulated in a realistic and reproducible manner in the full-scale wind tunnel of the University of Stuttgart by means of an active turbulence generator, developed by FKFS.
Technical Paper

An Efficient Hybrid Computational Process for Interior Noise Prediction in Aeroacoustic Vehicle Development

2023-05-08
2023-01-1120
Numerical methodologies for aeroacoustic analyses are increasingly crucial for car manufacturers to optimize the effectiveness of vehicle development. In the present work, a hybrid numerical tool based on the combination of a delayed detached-eddy simulation and a finite element model, which relies on the Lighthill’s acoustic analogy and the acoustic perturbation equations, is presented. The computational aeroacoustics is performed by the software OpenFOAM and Actran, concerning respectively the CFD and the FEM. The aeroacoustic behavior of the SUV Lamborghini Urus at a cruising speed of 140 km/h has been investigated. The main aerodynamic noise phenomena occurring in the side mirror region in a frequency range up to 5 kHz are discussed. The numerical simulations have been verified against the measurements performed in the aeroacoustic wind tunnel of the University of Stuttgart, operated by FKFS.
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Challenge Determining a Combustion System Concept for Downsized SI-engines - Comparison and Evaluation of Several Options for a Boosted 2-cylinder SI-engine

2013-04-08
2013-01-1730
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance in the SI engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so new challenges arise concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine was designed for research purposes by Weber Motor GmbH and Robert Bosch GmbH. The design process was described in detail in last year's paper SAE 2012-01-0832. Since the engine design is very modular it allows for several different engine layouts which can be examined and evaluated.
X