Refine Your Search

Topic

Author

Search Results

Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
Technical Paper

A Hydrodynamic Contact Algorithm

2001-09-24
2001-01-3596
Today, mechanical systems such as the piston groups of internal combustion engines are simulated using Multiple Body-System (MBS) - approaches. However, the use of these models is restricted to a few problems as their adaptability is limited. The simulation of mechanical systems only by means of finite elements shows great promise for the future. In order to consider lubrication effects between two touching bodies of a mechanical system, a hydrodynamic contact algorithm (HCA) for finite element (FE) applications was developed. This paper discusses the technical background and first results for the simulation of a piston group using this new approach.
Technical Paper

A Plug-In Hybrid Electric Vehicle Concept with Fuel Cell Range Extender for Urban Delivery Transport – Vehicle Application

2023-04-11
2023-01-0491
The electrification of vehicle fleets for urban delivery transport is becoming increasingly important due to ever stricter legal requirements and the high public pressure on companies. In this paper, a converted 3.5 t light-duty vehicle with a maximum gross weight of 7.5 t is presented. The vehicle has a serial hybrid electric powertrain with a maximum electric traction power of 150 kW and a 60 kW fuel cell range extender, and uses a 46 kWh battery with 400 V mean voltage level, resulting in a full electric range of 120 km. The electric drive is realized with an induction motor and a lithium-manganese-iron-phosphate (LMFP)-battery as well as a 2-speed gearbox. The fuel cell system has a fuel tank with 100 l volume and 700 bar pressure level, resulting in a total mass of around 4.2 kg of hydrogen. This enables an overall vehicle range of 400 km.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

A Way towards Remarkable Reduction of Co2-Emissions in Motorsports: The CNG-Engine

2011-06-09
2011-37-0006
Until a few years ago the discussion of reduction of CO₂ emissions was completely out of place in motorsports. Nowadays, also in this field, car manufacturers want to investigate different approaches towards a more responsible and sustainable concept. For this target an interesting and feasible solution is the use of methane as an alternative fuel. At the 2009 edition of the 24-hour endurance race of the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by turbocharged CNG engines. The aim was to prove that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued in 2010; this time exclusively with CNG vehicles.
Technical Paper

Alternative Fuels for Fuel Cell Powered Buses in Comparison to Diesel powered Buses

2000-04-26
2000-01-1484
Introducing a new fuel alternative to gasoline is a very complex task. According to their short to mid term economical feasibility selected processes are modeled. Selected emissions and the primary energy demand of the production and the utilization of hydrogen and methanol as fuels for fuel cell powered buses are compared to conventional diesel powered buses. Different production routes for the alternative fuels are considered. Ecological and economical numbers are given and interpreted.
Technical Paper

An Investigation of Sub-Synchronous Oscillations in Exhaust Gas Turbochargers

2015-09-06
2015-24-2531
Due to the demands for today's passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
Technical Paper

Closed Loop Binder Force System

1996-02-01
960824
When drawing non-axissymmetric sheet metal parts it is necessary to control the flow of material between the lower and upper binder in such a manner that prevents the occurrence of both tears and wrinkles in the drawn part. One possibility for the control of the material flow is through the deliberate adjustment of the normal forces. If one can measure the flow-in of the material into the die cavity as a function of punch stroke with a special sensor, and if this information can be used to produce an empirical flow-in curve over the stroke for good parts, then it is possible to construct a closed- loop BHF control system. Building such control system is feasible by implementation of special dies with hydraulically supported segmented binders. This system allows an automatic response to a change in the friction conditions.
Technical Paper

Combination of Hydraulic Multipoint Cushion System and Segment-Elastic Blankholders

1998-02-01
980077
The costs for development and production of draw dies for car outer panels are extremely high and should be reduced. Furthermore it is necessary to reduce the time for developing, designing and producing the dies for the production of parts. This paper discusses new press techniques, die designs and an adjustment program for press operators. The trend goes to single action presses with CNC-controlled multipoint cushion systems in the press table and to special designed dies. These systems lead to a more robust and reproducible forming process with improved product quality. This paper deals with: Cushion Systems, New Binder Designs for Draw Dies for Sheet Metal Automotive Parts, New Computer Program to Adjust the Blankholder Forces of Modern Hydraulic Cushion Systems of Single Action Presses and Pressure Measurement for Detecting the Pressure between the Blank and the Binders of Draw Dies for Sheet Metal Automotive Parts.
Technical Paper

Combined Physical and ANN-Based Engine Model of a Turbo-Charged DI Gasoline Engine with Variable Valve Timing

2023-04-11
2023-01-0194
High-efficient simulations are mandatory to manage the ever-increasing complexity of automotive powertrain system and reduce development time and costs. Integrating AI methods into the development process provides an ideal solution thanks to massive increase in computational power. Based on an 1D physical engine model of a turbo-charged direct injection gasoline engine with variable valve timing (VVT), a high-performance hybrid simulation model has been developed for increasing computing performance. The newly developed model is made of a physics-based low-pressure part including intake and exhaust peripheries and a neural-network-based high-pressure part for combustion chamber calculations. For the training and validation of the combustion chamber neural networks, a data set with 10.5 million operating points was generated in a short time thanks to the parallelizable combustion chamber simulations in stand-alone mode.
Technical Paper

Cycle Resolved Flow Field Measurements Using a PIV Movie Technique in a SI Engine

1992-10-01
922354
2-dimensional time resolved (200 frames/s) flow field measurements have been made in a transparent SI square piston engine using a movie version of particle image velocimetry (PIV). To this end the beam of a copper vapor laser was formed into a light sheet and was double pulsed with a pulse separation of 50 μs at a repetition rate of 200 Hz. A rotating drum camera was used to record the Mie-scattered signals from seeding particles. The circumferential velocity of the drum of the camera causes an image shifting of the two exposures taken with a double pulse. By proper adaption of drum and engine speed, a series of up to 70 double pulsed images per individual engine cycle may be recorded on film. This film data may be evaluated uniquely with respect to both magnitude and direction of individual flow vectors in the flow field.
Technical Paper

Cycle-Resolved Hydrogen Flame Speed Measurements with High Speed Schlieren Technique in a Hydrogen Direct Injection SI Engine

1994-10-01
942036
The influence of internal mixture formation oil hydrogen combustion in a SI engine was investigated using high speed Schlieren photography. To this end a computer controlled high pressure injection system for direct injection of gaseous hydrogen was developed. The injection system for hydrogen direct injection consists of an electronic control unit, a solenoid valve and a purpose developed injector. The timing and the duration of the hydrogen injection are controlled by an electronic unit. The fuel-air ratio was varied by adjusting the opening time of the solenoid valve. The hydrogen was fed into the combustion chamber of the engine with a pressure of 6.0 MPa. With this injection system and injection pressure it, is possible to inject the hydrogen into the combustion chamber of the engine even during hydrogen combustion. In order to compare the results of internal mixture formation, experiments with external mixture formation were also performed.
Technical Paper

Data-Driven Modeling: An AI Toolchain for the Powertrain Development Process

2022-03-29
2022-01-0158
Predictive physical modeling is an established method used in the development process for automotive components and systems. While accurate predictions can be issued after tuning model parameters, long computation times are expected depending on the complexity of the model. As requirements for components and systems continuously increase, new optimization approaches are constantly being applied to solve multidimensional objectives and resulting conflicts optimally. Some of those approaches are deemed not feasible, as the computational times for required single predictions using conventional simulation models are too high. To address this issue it is proposed to use data-driven model such as neural networks. Previous efforts have failed due to sparse data sets and resulting poor predictive ability. This paper introduces an AI Toolchain used for data-driven modeling of combustion engine components. Two methods for generating scalable and fully variable datasets will be shown.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Technical Paper

Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine

2016-11-08
2016-32-0046
The proposed paper deals with the development process and initial measurement results of an opposed-piston combustion engine for application in a Free-Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for a fuel based electrical power supply. With its arrangement, the pistons freely oscillate between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like a crank shaft. Linear alternators convert the kinetic energy of the moving pistons into electric energy. The virtual development of the novel combustion system is divided into two stages: On the one hand, the combustion system including e.g. a cylinder liner, pistons, cooling and lubrication concepts has to be developed.
X