Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Advanced Computational Aero-Acoustic Simulation of Complex Automotive Exhaust Systems

2011-04-12
2011-01-0503
In the automotive sector, the time to market has become increasingly important. Consequently, powertrain systems require specific exhaust systems solutions to meet engine performance, pollutant emissions and acoustic targets delivered in a shorten time period. In this context, exhaust system suppliers need to constantly update their development process and according to project demands, tail-pipe noise has to be managed with advanced tools and methodologies. Flow generated noise has a broad band character and depending on the product design, some tonal frequencies could appear and produce a whistling noise. In order to anticipate and solve all these sound quality problems, an innovative computational aeroacoustic methodology has been developed and validated for a large range of exhaust system products.
Technical Paper

Automatic Geometry Optimization of Exhaust Systems Based on Sensitivities Computed by a Continuous Adjoint CFD Method in OpenFOAM

2010-04-12
2010-01-1278
Meeting backpressure and flow uniformity requirements within severe packaging constraints presents a particular challenge in the layout of catalyst inlet cones. In these cases, a parameterized optimization of the potentially complex cone geometries is inefficient (and inappropriate). Even assuming that a parameterization of the complex surface forms is possible, the choice of parametric shapes invariably affects the achievable results. Additionally, the long computation time for solving the flow fields limits the number of shape parameters that can be considered. To overcome these restrictions, an optimization tool has been developed at EMCON Technologies that is based on the continuous adjoint method (augmented Lagrange method) of Othmer et al. The open source CFD toolbox OpenFOAM® is used as the platform for the implementation.
Technical Paper

Development of New Diesel Particulate Active Reduction System for both NOx and PM Reduction

2011-04-12
2011-01-1277
The new Diesel Particulate active Reduction (DPR) system was developed for a medium-duty commercial vehicle as a deNOx catalyst combined with the conventional DPR system to achieve the Japan Post New-Long-Term (JPNLT) emissions regulations. It consists of a catalyst converter named as the new DPR cleaner, a fuel dosing injector, NOx sensors, temperatures and pressure sensors. The new DPR cleaner was constructed from a Front Diesel Oxidation Catalyst (F-DOC), a catalyzed particulate Filter (Filter), and a Rear Diesel Oxidation Catalyst (R-DOC). A newly developed Hydrocarbon Selective Catalyst Reduction (HC-SCR) catalyst was employed for each catalyst aiming to reduce NOx emissions with diesel fuel supplied from the fuel dosing injector. While the total volume of the catalyst was increased, the compact and easy-to-install catalyst converter was realized through the optimization of the flow vector and flow distribution in it by means of Computational Fluid Dynamics (CFD) analysis.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
X