Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Random Vibration Test Methods for Automotive Subsystems Using Power Spectral Density (PSD)

2000-03-06
2000-01-1331
The object of this paper is to develop a random vibration laboratory test specification for automotive subsystems using the Power Spectral Density (PSD) method. This development is based on the 150k mile field data collected from vehicle proving grounds. The simulated vibration bench test will be used to simulate the energy of the 150k mile field data. The developed specification will include 3 axis random vibration profiles of appropriate duration. The Power Spectral Density method converts the time-domain field data into the frequency-domain data. The Enveloped Energy method groups the similar road PSD profiles to produce a generic PSD profile. The Inverse Law allocates an adjusted duration to the desired PSD energy level. The Road Test Specification provides the duration time for the developed bench test. The n-Soft tool [1] is utilized for data reduction analysis. The Bench Test Specification of the Fuel subsystem is a pilot for this development.
Technical Paper

Axial Collapse of Thin Wall Cylindrical Column

1984-04-01
840727
In order to understand the crush behavior of complex structural system such as a vehicle, one must first acquire the knowledge of crush characteristics of structural components that constitute the system and control its crush performance. In this paper, the crush strength characteristics and modes of collapse of thin walled circular columns are mathematically formulated. The formulation is based on the stability of shell structure subjected to axial crush, where various stages of collapse are identified and crush characteristics pertinent to column design are quantified. The effect of column size and the material properties on the collapse stability and crush strength characteristics of thin walled shell components are discussed. The size and number of folds for the axisymmetric “ring” mode and the nonsymmetric “diamond” mode are determined.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Planetary Gear Test Development and Evaluation

1996-02-01
960978
Little information is available concerning the bending fatigue behavior of helical gears with tall thin teeth and high contact ratios, particularly for planetary pinions which are subjected to fully reversed loading. The most common methods to acquire gear bending fatigue data are either through a four-square recirculating power arrangement or unidirectional single tooth bending experiments on standardized spur gears. There are some advantages to these test methods, but they generally do not represent actual operating conditions of a planetary gear environment. The purpose of this study was to develop a bending fatigue test for planetary pinions in automatic transmissions which would better represent actual operating conditions. The new testing procedure was used to evaluate the bending fatigue behavior of three gear steel/processing combinations. The results from the planetary gear testing is compared with laboratory four-point bending experiments.
Technical Paper

Brake Dynamometer Test Variability - Analysis of Root Causes

2010-10-10
2010-01-1697
Modern project management including brake testing includes the exchange of reliable results from different sources and different locations. The ISO TC22/SWG2-Brake Lining Committee established a task force led by Ford Motor Co. to determine and analyze root causes for variability during dynamometer brake performance testing. The overall goal was to provide guidelines on how to reduce variability and how to improve correlation between dynamometer and vehicle test results. This collaborative accuracy study used the ISO 26867 Friction behavior assessment for automotive brake systems. Future efforts of the ISO task force will address NVH and vehicle-level tests. This paper corresponds to the first two phases of the project regarding performance brake dynamometer testing and presents results, findings and conclusions regarding repeatability (within-lab) and reproducibility (between-labs) from different laboratories and different brake dynamometers.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Technical Paper

Brake Lining Mechanical Properties, Laboratory Specimen Studies

1979-02-01
790715
All automotive brake linings have mechanical strength and thermal expansion properties which vary with orientation. This paper describes laboratory equipment and test procedures which characterize lining strength and expansion behavior, using small specimens. A benchtop testing device is introduced which can be used to perform shear and tensile tests on lining samples and singly-riveted lining assemblies. Results are presented for a representative group of production and experimental linings. Applications are discussed.
Technical Paper

Controlling Panel Noise and Vibration Using Non-Contacting Test Methodologies

1993-05-01
931339
Non-contacting test methodology studies of automotive body components have become a very useful, high resolution and sensitive test technique to engineering personnel. Continuous wave laser holometry, computer aided holometry (CAH), pulsed laser holometry and a scanning laser system were used to image vibration patterns. These methods were selected because of improved data turn-around time in the test development process while having no mass-loading effects on the sheet metal panels. An analysis of the vehicle body structure was conducted to improve the interior body structure sound quality and to reduce road noise presence. An interrogation of the interior noise spectrum identified critical frequencies affecting vehicle NVH. This paper addresses the results of using the aforementioned non-contacting test methods to reduce panel responses by developing an optimum rib section and pattern, and the addition of adhered stiffening materials.
Technical Paper

Correlation Test: Guaporé Mountain Test vs Proving Ground

2013-05-15
2013-36-0038
Downhill tests are widely used as a method of evaluation, development and validation of braking efficiency, friction pair durability, braking balance, as well as fade characteristics and recovery of friction material properties. This test procedure is used for both: passenger vehicles and light & heavy commercial vehicles. The energy levels in the brake system are higher on commercial vehicles and the thermal characteristics much more critical. Added to the fact that such tests are conducted on public highways, it has an intrinsic security risk for both the vehicle tested and all others around. Until a few years ago, it was still feasible to conduct tests downhill on different routes keeping a high security level. Given an increasing traffic on highways, where the test is currently carried out, a need to create a similar downhill procedure (called Guaporé Mountain Test) within a Proving Ground under controlled conditions has been noticed.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Critical Comparisons of US and European Dynamic Side Impacts

1997-02-24
970128
Global engineering is increasingly becoming a practice within the automotive industry. Due to added engineering and manufacturing benefits, more and more new vehicles are being developed with common structure to meet the consumer needs in many local regions. While vehicle development and manufacturing process is becoming global, automotive safety regulations in various parts of the world have not been as uniform. A good example is the differing requirements for dynamic side impact protection of new vehicles. United States National Highway Traffic Safety Administration (NHTSA) and European Union (EU) have each produced their own distinct test procedures such as, different barrier faces, impact configurations, and anthropomorphic test devices (dummies). Although both test procedures have the same final objective estimate occupant responses in side impacts, they differ greatly in execution and emphasis on occupant response requirements.
Technical Paper

Customer Based Holometric Analysis

1995-05-01
951308
This paper describes a test-based process used to identify structural characteristics of a vehicle windshield wiper system that contribute to customer impression of the sound. The method of paired comparisons determined which wiper system sounds customers preferred. Annoyance ratings of sound components then identified contributors to customer preference. Wiper motor noise was identified as the major annoyance factor affecting system sound quality. This information guided a study of the structures responsible for radiated motor noise. Laser based test methods were used to interrogate the structures clearly identifying transmission paths into the surrounding structure. Paths were then modified reducing structure-borne motor sound as measured with acoustic retests. Thus, a logical technique for hardware testing and modification guided by customer perceptions is presented allowing efforts to be focussed on the most critical aspects of vehicle sound quality.
Technical Paper

Customer Fuel Consumption – The Vehicle Data Bus as Real–World Information Source

2000-03-06
2000-01-1337
Road to rig problems exist as long as vehicles are being tested. Many approaches and methods exist to produce test cycles for rigs or test tracks, in order to produce viable results for the generation of statements concerning such crucial aspects as durability and fuel consumption. Modern model strategies again demand shorter–than–ever development periods, whilst meeting better–than–ever the needs and demands of special target groups. Therefore, the testing methods must also be refined, in order to gain a closer correlation to the customer's vehicle deployment. The approach introduced here makes use of real–world customer data for obtaining a closer look at how the vehicle is used by different customer groups, in different countries. The data is collected by small and unobtrusive dataloggers installed in customer vehicles. As these customers are using their own vehicles in everyday life, being unaware of the acquisition process, a database of real customer usage is generated.
Technical Paper

DEVELOPMENT OF THE CONCEPT OF NON-FLAME EXHAUST GAS REACTORS

1962-01-01
620402
Investigations of the non-flame oxidation of exhaust gas hydrocarbons and carbon monoxide are reported. These investigations cover basic studies of the relationship of temperature, oxygen, and residence time to oxidation rates with external, supplementary, exhaust gas heating. Reaction (oxidation) is then shown to be possible without supplementary heat in the test installation of a homogeneous reactor on one cylinder of a V-8 engine on an engine dynamometer. Vehicle tests were then conducted to determine the operational characteristics and oxidation performances of a series of multi-cylinder reactors mounted on 292-cubic-inch-displacement engines. Unique methods of air introduction and heat conservation are described. These reactors were capable of effectively decreasing exhaust concentrations of hydrocarbon and carbon monoxide while the vehicles were driven over a traffic route. Tests of two reactors designed especially for fast warm-up are reported.
Technical Paper

Determination of Accumulated Structural Loads from S/N Gage Resistance Measurements

1973-02-01
730139
A new, low cost method to determine the accumulated structural loads in service (not to predict component fatigue life) that requires practically no on-board instrumentation is discussed. This method makes use of S/N fatigue life gages with high-gain mechanical multipliers bonded to a component. Permanent change in gage resistance results from the number of component load cycles and their magnitudes. These resistance change data are then used to reconstruct the load range history. The computer program on this method is listed in the Appendix. Results of laboratory tests conducted to validate the new method and evaluate the behavior of the multipliers over a practical range of operating temperature and strain magnitude and frequency are presented. The component load range distribution estimated by this method is compared to that measured by conventional methods for a vehicle operating on a proving ground route.
Technical Paper

Development of a Door Test Facility for Implementing the Door Component Test Methodology

1997-02-24
970568
This paper describes the development of an automated Door Test Facility for implementing the Door Component Test Methodology for side impact analysis. The automated targeting and loading of the door inner/trim panels with Side Impact Dummy (SID) ribcage, pelvis, and leg rams will greatly improve its test-to-test repeatability and expedite door/trim/armrest development/evaluation for verification with the dynamic side impact test of FMVSS 214 (Occupant Side Impact Protection). This test facility, which is capable of evaluating up to four (4) doors per day, provides a quick evaluation of door systems. The results generated from this test methodology provide accurate input data necessary for a MADYMO Side Impact Simulation Model. The test procedure and simulation results will be discussed.
Technical Paper

Development of a Standard Spin Loss Test Procedure for 4WD Transfer Cases

2012-04-16
2012-01-0306
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of parasitic losses on all driveline components is required. A standardized comparison procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This procedure was validated for repeatability considering variations in soak time, temperature measurement positions on the transfer case, and test operating conditions. Additional assessments of spin loss at low ambient temperatures, and the effect of component break-in on spin loss were also conducted.
Technical Paper

Development of a Test Procedure for Quantifying Performance Benefits of Solar Control Glazings on Occupant Comfort

1991-02-01
910536
The evaluation of the performance benefits of solar load reducing glazings using production vehicles is key to the establishment of the product cost/benefit ratio. Climatic windtunnels normally used to evaluate heat gain and vehicle cooldown can not provide true solar simulation. Comparative testing using a test car and a control vehicle must therefore be conducted outside in uncontrollable ambient conditions. The subject paper deals with the development of a testing methodology capable of quantifying thermal performance differences, as low as 5%, resulting from component differences, including glazings. The procedure described includes the use of B & K Thermal Comfort Meters to standardize the refrigeration system performance and to evaluate the rate of vehicle interior cooldown. Data taken during summer test programs in the Southwest for evaluation of heat absorbing glazings will be reviewed.
Technical Paper

Development of a Test Procedure for Ranking Underhood and Underbody Heat Shield Materials and Designs

1997-05-19
971820
In order to enhance the ability of engineers to quickly and easily evaluate new heat shield materials and construction methods for the underhood and underbody regions of the vehicle, a standardized rig test is being developed. The issues involved in the development of this test method are discussed as well as the important parameters. Test results for different heat shield materials are also presented.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
X