Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

A Calibration Study of CFD for Automotive Shapes and CD

1994-03-01
940323
An extensive calibration study has been initiated to assess the predictive ability of CFD (Computational Fluid Dynamics) for the aerodynamic design of automotive shapes. Several codes are being checked against a set of detailed wind tunnel measurements on ten car-like shapes. The objective is to assess the ability of numerical analysis to predict the CD (drag coefficient) influence of the rear end configuration. The study also provides a significant base of information for investigating discrepancies between predicted and measured flow fields and for assessing new numerical techniques. This technical report compares STAR-CD predictions to the wind tunnel measurements. The initial results are quite encouraging. Calculated centerline pressure distributions on the front end, underbody and floor compare well for all ten shapes. Wake flow structures are in reasonable agreement for many of the configurations. Drag, lift, and pitching moment trends follow the experimental measurements.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Discussion of Aerodynamic Interference Effects Between a Race Car and a Race Track Retaining Wall (A Wind Tunnel NASCAR Case Study)

1988-02-01
880458
This report should not be looked upon as an end in itself, but rather as a thought provoker. It raises the question that there may be an additional dimension to race car aerodynamics other than just open roadway drag reduction, stability and handling performance. Some situations are seldom considered, nor even addressed, in public forums. Based upon wind tunnel test data, the authors show, at least for this one test setup, that significantly large changes in aerodynamic forces can be generated on a NASCAR stock car racer by its close proximity to the stationary retaining wall around a race track.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Technical Paper

Accelerated Testing of Nonvolatile Memory Retention

1984-02-01
840488
This paper discusses the testing for retentivity of non-volatile memories. The physics associated with the reliable production of various non-volatile data storage devices has long been a topic of debate. The ability to reliably produce devices which endure erase/write cycling and retain data for extended periods of time has been questionable. Recent improvements in IC processing has given rise to claims of enhancements in both of these areas. Non-volatile memories are attractive in many automotive electronic applications where battery backup is neither convenient or feasible, but because of reliability concerns they have not found their way into critical applications. In applications like odometer or emission control calibrations it is imperative that memory retention is assured. In order to verify the reliability of the various available non-volatile memory devices, an accelerated test program was instituted.
Technical Paper

Advanced Control of Engine RPM for a More Intuitive Driving Experience in Power Split Hybrid Electric Vehicles

2010-10-25
2010-01-2194
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
Technical Paper

Aerodynamic Wind Throb in Passenger Cars

1964-01-01
640797
Most automobiles, at certain speeds with at least one window open, develop a pulsating pressure which is felt mainly through the ears and is objectionable to the occupants. While this “aerodynamic wind throb” is noticeable over a range of speeds, there is a fairly pronounced peak in the effect at one speed. This problem is studied analytically and experimentally. It is established that the car is a dynamic system consisting of a Helmholtz resonator excited by an edge tone. It is shown that the trouble can be corrected by changing the natural frequency, minimizing or eliminating the excitation, or increasing damping of the system.
Technical Paper

An Adaptable, Multitest, Multichannel Fatigue Test System

1995-02-01
950703
A highly adaptable fatigue testing computer system is presented for controlling single or multichannel test machines. The system imposes most common varieties of waveforms and also provides time synchronization between channels, such as in the case of variable amplitude biaxial load histories, and monitors various feedback signals for both data acquisition and alarm purposes. The program operates in a real-time Unix system as a separate stand-alone process. Communication with other users or the operator is done only through a reserved common block of shared memory. This feature allows control and monitoring of all tests over the computer network. A user can simply login remotely and check the test or start a data acquisition task from any workstation in the company, and then take the data files and analyze them on other computers. This paper describes the operation of the software, the methodology behind the hardware selection and the software structure.
Technical Paper

An Experimental Battery Powered Ford Cortina Estate Car

1970-02-01
700024
The design of the Ford Cortina Estate Car converted to propulsion by currently available batteries is described, and results for power train component performance test and vehicle driving characteristics are given. Concept and purpose of this test vehicle are discussed, and chassis and body modifications are described. Design of the electric power train, employing a dc commutator motor and dc solid state chopper controller, is developed. The car instrumentation is described and operating experience in several driving modes is reported. A discussion of battery characteristics concludes the paper.
Technical Paper

An Open Versus Closed Architecture for Multimedia Systems

2000-11-01
2000-01-C065
For many years, carmakers have developed unique system designs to gain a competitive advantage using some unique technology or an optimization of a design to cut costs or improve quality. This leads to continual increase in complexity, long development times and high development costs. A common platform, based on an "open architecture,'' provides a solution for many of the problems associated with the conventional automotive approach to electrical/electronic system designs. The PC industry is a prime example of how an open architecture can provide benefits to the consumer, manufacturers of software and hardware components, as well as complete system integrators. The PC, based on the initial IBM computer developed in the early eighties, has become a de facto standard that has survived 20 years of fast and dramatic changes in the fundamental technologies used within the platform.
Technical Paper

Archetypal Vehicle Dynamics Model for Resistance Rollover Prediction

2010-04-12
2010-01-0715
Nowadays is a common sense the importance of the CAE usage in the modern automotive industry. The ability to predict the design behavior of a project represents a competitive advantage. However, some CAE models have become so complex and detailed that, in some cases, one just can not build up the model without a considerable amount of information. In that case simplified models play an important role in the design phase, especially in pre-program stages. This work intends to build an archetypal vehicle dynamics model able to predict the rollover resistance of a vehicle design. Through the study of a more complex model, carried out in Adams environment, it was possible to identify the key degrees of freedom to be considered in the simplified model along with important elements of the suspension which are also important design factors.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
X