Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

A Brief History of Auto Radio Styling

1989-02-01
890114
“There's nothing new under the sun,” the old proverb says. But you only have to read a magazine, scan a periodical, listen to the radio, watch television, or glance at the multitude of ads that promise that such and such product is the latest trend or has up-to-date, state-of-the-art technology, to seemingly prove the old proverb wrong. However, old proverbs become old because they withstand the test of time. In this case, a hasty judgement should be withheld. Currently, as in the past, the above holds true for car radios as well. Whether in the United States, Europe, Canada or Latin America, the public has always been susceptible to last minute technological advances. It is curious then, that as far as car radio styling is concerned, their appearance has been typically rather conservative, and that it is only recently that styling has begun to change to be more in tune with the times.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

A Dyno Data Acquisition System for Lean NOx Trap Investigations

2001-03-05
2001-01-0208
A flexible, easily configuration data acquisition system was designed and built for detailed studies of the steady state and dynamic properties of lean NOx traps for an engine dynamometer environment. The system is based on the industry standard VXI backplane. The overriding design philosophy was to design and develop a data acquisition system that was user friendly and could be operated easily by engine laboratory technicians, as well as by test engineers. The primary requirements guiding the design were the following: (1) the ability easily to configure, save, recall, modify, and print test configurations. (2) The ability to configure the gain, channel name, and engineering units for each analog channel. (3) The ability to trigger from one analog input channel. (4) A provision for numeric auto-incrementing of data file names. (5) The ability to save data in Excel™ compatible ASCII format. (6) The utilization of off-the shelf VXI hardware.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

A Front Rail Design for Efficient Crush Energy Absorption

1995-10-31
1995-20-0016
Although there was a safety awareness from the earliest days of the automobile, systematic approaches to designing for safety became more widespread after 1950 when large numbers of vehicles came into use in both the United States and Europe, and governments in both continents undertook a widespread highway development. Industry response to safety objectives and also to government regulation has produced a large number of safety enhancing engineering developments, including radial tires, disc brakes, anti-lock brakes, improved vehicle lighting systems, better highway sign support poles, padded instrument panels, better windshield retention systems, collapsible hood structures, accident sensitive fuel pump shut-off valves, and other items. A significant development was the design of the energy absorbing front structures.
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

A Hybrid Road Loads Prediction Method with Full Vehicle Dynamic Simulation

1997-04-08
971513
A hybrid approach to predict road-induced loads in vehicle structures is presented. The technique involves full vehicle dynamic simulation using measured wheel forces, absolute wheel vertical displacements, and steering angle as input. The wheel vertical displacement is derived from the measured wheel acceleration. This approach avoids the use of tire-road interface modeling. It also improves the conventional loads measuring process with minimum instrumentation and data acquisition. Existing load data from a test vehicle is used to validate this approach. Computed component loads show good agreement with measurements.
Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

A Microcomputer Based Data Acquisition System for Versatile Mobile Data Processing

1978-02-01
780151
A Microcomputer Based Eight Channel Data Acquisition System has been developed for customer correlation and routine vehicle field testing applications. The eight channel system includes a self-contained signal conditioning system designed for a variety of transducer types and data frequency requirements. Calibration, signal gain, and channel zero offset adjustments can be performed under software control. The microcomputer system is based on a Motorola M6800 microprocessor and a non-volatile core memory module. The paper describes the design, development, field performance, and data processing characteristics of the system and presents specific automotive applications and field test results.
Technical Paper

A Microcomputer-Based On-Vehicle Data Acquisition System

1981-06-01
810811
A microcomputer-based, multichannel data acquisition system has been developed to acquire high frequency transient information typified by, but not limited to, automotive vehicle crash test applications. The system, which has been designed to be mounted on the test vehicle during a vehicle crash, will accommodate up to 240 channels. Each channel is comprised of a stand-alone microcomputer, memory for data storage, signal conditioning for piezoresistive transducers, automatic calibration and zero offsets, and programmable gain amplifier. The microcomputer is based upon a Motorola 6801/68701 microcomputer. The paper describes the design, development, and data processing characteristics of the prototype system.
X