Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

A Comparative Study of the Fatigue Behavior of Spot Welded and Mechanically Fastened Aluminum Joints

1995-02-01
950710
The cyclic behavior of single overlap aluminum joints joined through a number of different methods has been investigated using Alcan 5754-O, an alloy that potentially could be used in structural applications. Overlap shear tests of spot welded, clinched and riveted joints are compared on the basis of their fatigue performance. The fatigue response of the spot welded joint was the baseline to which the other fasteners were compared. Test results showed an improvement of approximately 25% for both the mechanical clinch joints and aluminum rivets in fatigue strength at 106 cycles. The most significant improvement in fatigue strength of 100% was found for the self piercing rivets at 106 cycles. The failure behavior of the various joining methods is discussed as well as the surface appearance.
Technical Paper

A Cycle Counting Algorithm for Fatigue Damage Analysis

1974-02-01
740278
A cycle counting algorithm that will reduce a complex history into a series of discrete cycles is presented. The cycles determined by this technique are defined as closed stress-strain hysteresis loops of the type obtained from constant amplitude tests. Using the computer cycle counting algorithm, life predictions were made and compared with experimental results. These predictions were found to be typically within a ±3 factor of error. Also, the computer counting method was found to yield more accurate life predictions when compared to the histogram and range counting methods.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

A New Method for Calculating Fluctuation Strength in Electric Motors

2001-04-30
2001-01-1588
In assessing the sound quality of electric motors (e.g., seat, mirror, and adjustable pedal motors), the sensation of Fluctuation Strength - a measure of intensity or frequency variation - has become important. For electric motors, it is typically caused by variation in the load, creating frequency modulation in the sound. An existing method for calculating Fluctuation Strength proved useful initially, but more extensive testing identified unacceptable performance. There were unacceptable levels of both false positives and false negatives. A new method is presented, which shows improved correlation with perceived fluctuation in sounds. Comparisons are made to the previous method and improvement is shown through examples of objective-subjective correlation for both seat motor sounds and adjustable pedal motor sounds. The new method is also shown to match subjective data from which the original measure of Fluctuation Strength was derived.
Technical Paper

A New Port and Cylinder Wall Wetting Model to Predict Transient Air/Fuel Excursions in a Port Fuel Injected Engine

1996-05-01
961186
We have developed a new wall wetting model to predict the transient Air/Fuel ratio excursion in a port fuel injected (PFI) engine due to changes in air or fuel flow. The quasi-dimensional model accounts for fuel films both in the port as well as in the cylinder of a PFI engine and includes the effects of back-flow on the port fuel films to redistribute and vaporize the fuel. A multi-component fuel model is included in the simulation; it gives realistic fuel behavior and allows the effects of different fuel distillation curves to be studied. The multi-component fuel model calculates the changing composition of the fuel puddles in the port and cylinder during the cycle. The inclusion of an in-cylinder fuel film allows the model to be used for cold start conditions down to 290 K. The model uses the Reynold's analogy to calculate the fuel vaporization process and uses a boundary layer calculation to solve for the liquid film flow.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
Technical Paper

A Predictive Model for Feedgas Hydrocarbon Emissions: An Extension to Warm Engine Maps

2005-10-24
2005-01-3862
A feedgas hydrocarbon emissions model that extends the usefulness of fully-warmed steady-state engine maps to the cold transient regime was developed for use within a vehicle simulation program that focuses on the powertrain control system (Virtual Powertrain and Control System, VPACS). The formulation considers three main sources of hydrocarbon. The primary component originates from in-cylinder crevice effects which are correlated with engine coolant temperature. The second component includes the mass of fuel that enters the cylinder but remains unavailable for combustion (liquid phase) and subsequently vaporizes during the exhaust portion of the cycle. The third component includes any fuel that remains from a slow or incomplete burn as predicted by a crank angle resolved combustion model.
Technical Paper

A Preliminary Study of Virtual Humidity Sensors for Vehicle Systems

2014-04-01
2014-01-1156
New vehicle control algorithms are needed to meet future emissions and fuel economy mandates that are quite likely to require a measurement of ambient specific humidity (SH). Current practice is to obtain the SH by measurement of relative humidity (RH), temperature and barometric pressure with physical sensors, and then to estimate the SH using a fit equation. In this paper a novel approach is described: a system of neural networks trained to estimate the SH using data that already exists on the vehicle bus. The neural network system, which is referred to as a virtual SH sensor, incorporates information from the global navigation satellite system such as longitude, latitude, time and date, and from the vehicle climate control system such as temperature and barometric pressure, and outputs an estimate of SH. The conclusion of this preliminary study is that neural networks have the potential of being used as a virtual sensor for estimating ambient and intake manifold's SH.
Technical Paper

A Review of the Effect of Engine Operating Conditions on Borderline Knock

1996-02-01
960497
The effects of engine operating conditions on the octane requirement and the resulting knock-limited output were studied on a single cylinder engine using production cylinder heads. A 4-valve cylinder head with port deactivation was used to study the effect of fuel octane, inlet air temperature, coolant temperature, air/fuel ratio, compression ratio and exhaust back pressure. The effect of the thermal environment was studied in more detail using separate cooling systems for the cylinder head and engine block on a 2-valve cylinder head. The results of this study compared closely with results found in the literature even though the engine and/or operating conditions were quite different in many cases.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

A Structural Ceramic Diesel Engine-The Critical Elements

1987-02-01
870651
A structural ceramic diesel engine has the potential to provide low heat rejection and significant improvements in fuel economy. Analytical and experimental evaluations were conducted on the critical elements of this engine. The structural ceramic components, which included the cylinder, piston and pin, operated successfully in a single cylinder engine for over 100 hours. The potential for up to 8-11% improvement in indicated specific fuel consumption was projected when corrections for blow-by were applied. The ringless piston with gas squeeze film lubrication avoided the difficulty with liquid lubricants in the high temperature piston/cylinder area. The resulting reduction in friction was projected to provide an additional 15% improvement in brake specific fuel consumption for a multi-cylinder engine at light loads.
Technical Paper

A Time-Domain Fatigue Life Prediction Method for Vehicle Body Structures

1996-02-01
960567
Fatigue analysis using finite element models of a full vehicle body structure subjected to proving ground durability loads is a very complex task. The current paper presents an analytical procedure for fatigue life predictions of full body structures based on a time-domain approach. The paper addresses those situations where this kind of analysis is necessary. It also discusses the major factors (e.g., stress equivalencing procedure, cycle counting method, event lumping and load interactions) which affect fatigue life predictions in the procedure. A comparison study is conducted which explores the combination of these factors favorable for realistic fatigue life prediction. The concepts are demonstrated using a body system model of production size.
Technical Paper

An Adaptable, Multitest, Multichannel Fatigue Test System

1995-02-01
950703
A highly adaptable fatigue testing computer system is presented for controlling single or multichannel test machines. The system imposes most common varieties of waveforms and also provides time synchronization between channels, such as in the case of variable amplitude biaxial load histories, and monitors various feedback signals for both data acquisition and alarm purposes. The program operates in a real-time Unix system as a separate stand-alone process. Communication with other users or the operator is done only through a reserved common block of shared memory. This feature allows control and monitoring of all tests over the computer network. A user can simply login remotely and check the test or start a data acquisition task from any workstation in the company, and then take the data files and analyze them on other computers. This paper describes the operation of the software, the methodology behind the hardware selection and the software structure.
Technical Paper

An Algorithm to Compensate for Air Charge Prediction Errors

2000-03-06
2000-01-0258
Various methods are available to predict future cylinder air charge for improved air/fuel control. However, there can never be perfect prediction. This paper presents an algorithm to correct for imperfect cylinder charge prediction. This is done by expanding the air/fuel control boundary to include the catalyst, and correcting prediction errors as soon as possible using small corrective changes to later cylinder fuel inputs. The method was experimentally tested and showed improved air/fuel control as indicated by reduced variability of catalyst downstream air/fuel ratio. Additional vehicle testing showed potential to further reduce emissions.
Technical Paper

An Analytical Method for Determining Engine Torque Harmonics for Use With Up Front CAE

1995-05-01
951248
An analytical method for determining engine torque harmonics is presented. The approach employs an engine cycle simulation model to calculate instantaneous cylinder pressure for each operating condition based on engine characteristics that can be determined experimentally and/or analytically. Cylinder pressure is converted to instantaneous torque from which harmonics are determined using an FFT algorithm. A description of the cycle simulation model, including required data, is presented. The method is validated by presenting correlation results at a number of operating conditions (i.e. engine speeds and loads) comparing analytical versus test driveline torque harmonics. Finally, limitations in the method as well as possible extensions to the method are discussed.
Journal Article

An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine

2012-04-16
2012-01-0423
Two combustion systems were developed and optimized for an engine for a power cylinder of 0.8-0.9L/cylinder. The first design was a re-entrant bowl concept which was based on the combustion system of a smaller engine with roughly 0.5L/cylinder. The second design was a chamfered bowl concept, a variant of a reentrant bowl that deliberately splits fuel between the bowl and the squish region. For each combustion system concept, nozzle tip protrusion, swirl, and nozzle configuration (number of holes, nozzle flow, and spray angle) were optimized. Several similarities between combustion system concepts were noted, including the optimal swirl and number of holes. The resulting optimums for each concept were compared. The chamfered combustion system was found to have better part-load emissions and fuel consumption tradeoffs. Full load performance was similar at low speed between the two combustion systems, but the reentrant combustion system had advantages at high engine speed and load.
X