Refine Your Search

Topic

Author

Search Results

Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Journal Article

A Study of Active and Passive Regeneration Using Laboratory Generated Soot on a Variety of SiC Diesel Particulate Filter Formulations

2010-04-12
2010-01-0533
In this study an attempt to understand and demonstrate the effects of various washcoat technologies under active and passive regeneration conditions was performed. Six different formulations, on 1.0" D. x 3.0" L. SiC wall flow filters at the laboratory level were used at various test conditions, including variable NO₂/NO ratios and O₂ concentrations. Samples were regenerated using active and passive conditions to evaluate regeneration rates and the potential impact of regeneration at the vehicle level. Results were applied to vehicle operating conditions to determine passive functionality and potential benefits. Active regenerations at 2% O₂ and 5% O₂ showed no significant difference in time to complete regeneration and soot burn rates. Active regenerations performed at 1% O₂ and 5% O₂ concentration showed that the regeneration temperature was shifted by approximately 50°C.
Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

2001-03-05
2001-01-0646
This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

Aluminum Rail Rivet and Steel Rail Weld DOE and CAE Studies for NVH

2001-04-30
2001-01-1608
Vehicle body with aluminum riveted construction instead of steel welded one will be a big challenge to NVH. In this paper, aluminum and steel rails with the dimensions similar to the rear rail portion of a typical mid-size sedan were fabricated. Rivets were used to assemble the aluminum rails while welds were used to assemble the steel rails. Adhesive, rivet/weld spacing, and rivet/weld location were the three major factors to be studied and their impact on NVH were investigated. The DOE matrix was developed using these three major factors. Modal tests were performed on those rails according to the DOE matrix. The FEA models corresponding to the hardware were built. CAE modal analysis were performed and compared with test data. The current in-house CAE modeling techniques for spot weld and adhesive were evaluated and validated with test data.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

An Ultrasonic Technique for Measuring the Elastic Constants of Small Samples

1995-02-01
950897
Using instrumentation designed for the ultrasonic measurement of thickness, a technique has been devised for measuring the isotropic elastic constants of small samples, i. e., samples 1 mm in thickness and a minimum of 5 mm in other dimensions. Young's modulus, the shear modulus and Poisson's ratio are calculated from measurements of density and ultrasonic shear and longitudinal wave velocities. Samples of valve train materials, including chill cast iron, low alloy steel, tool steel, stainless steel, a nickel-base superalloy, and a powder metal alloy were machined from components and analyzed. The magnitude of the measured values of the elastic constants are reasonable when compared with published values. The measurement error on all the constants is estimated to be less than 1%. Moduli determined by this method can be used in finite element analyses to improve designs.
Technical Paper

Analytical and Experimental Evaluation of a Thermally Insulated Automotive Exhaust System

1994-03-01
940312
For an automotive exhaust system, analytical evaluation of coatings, dual wall, multiwall, and blanket insulation methods indicated that the blanket insulation provided the best method for heat containment. An experimental vehicle was tested with and without a blanket insulation on the exhaust system over a demanding heat protection cycle. The exhaust gas, pipe wall, surrounding air, and adjacent component temperatures at 25 locations along the pipe are reported indicating reduced outer wall temperatures and good containment of the heat. A comparison of the heat lost through the exhaust system walls is presented.
Technical Paper

Application of CAE Nonlinear Crash Analysis to Aluminum Automotive Crashworthiness Design

1995-04-01
951080
After establishing the performance requirements and initial design assumptions, CAE concept models are used to set targets for major structural components to achieve desirable crash performance. When the designs of these major components become available they are analyzed in detail using nonlinear crash finite element models to evaluate their performance. All these components are assembled together later in a full car model to predict the overall vehicle crash performance. If the analysis shows that the targets are met, the design drawings are released for prototype fabrication. When CAE tools are effectively used, it will reduce product development cycle time and the number of prototypes. Crash analysis methodology has been validated and applied for steel automotive product development. Recently, aluminum is replacing steel for lighter and more fuel efficient automobiles. In general aluminum has quite different performance from steel, in particular with lower ductility.
Technical Paper

Applications of High Strength Steels in Hydroforming Dual Phase Vs. HSLA

2001-03-05
2001-01-1133
Dual Phase (DP) high strength steel is widely used in Europe and Japan for automotive component applications, and has recently drawn greater attention in the North American automotive industry for improving crash performance and reducing weight. In comparison with high-strength low-alloy (HSLA) steel grades with similar initial yield strength, DP steel has the following advantages: higher strain hardening, higher energy absorption, higher fatigue strength, higher bake hardenablility, and no yield point elongation. This paper compares the performance of DP and HSLA steel grades before, during, and after hydroforming. Computer simulation results show that DP steel demonstrates more uniform material flow during hydroforming, better crash performance and less wrinkling tendency.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Technical Paper

Bar Code System for Gas Cylinder Data Tracking and Inventory Control

1988-02-01
880548
This paper describes the development and key features of a bar code based, computerized gas cylinder inventory and record keeping system developed by Ford Motor Company's Gas Standards Laboratory. The paper will demonstrate how bar code technology is being utilized to track compressed gas cylinders efficiently and accurately. It will also describe the link between bar code technology and a data base that was developed using a fourth generation computer language. The implementation of this bar code/data base system has significantly increased data accessibility, improved data quality, reduced training time and increased the efficiency and flexibility of the data reporting process.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Four-Point Bend Test Development and Evaluation

1996-02-01
960977
The ability to evaluate the bending fatigue behavior of carburized low alloy steels in a laboratory and relate these measurements to performance of high contact ratio helical gears is important to the design and development of transmissions. Typical methods of evaluating bending fatigue performance of carburized gear steels do not directly represent helical planetary gears because they lack the geometric and loading conditions of planetary pinions. The purpose of this study is twofold; 1) development of a lab fatigue test to represent the fatigue performance of planetary pinion gears tested in a dynamometer and 2) evaluation of the influence of alloy content on bending fatigue performance of two steel alloys. The steels under evaluation were modified 8620M and 4615M alloys machined into bend bars with a notch representing a gear root and carburized to a case depth of approximately 0.35 mm (using the same carburizing cycle as the planetary pinion gears).
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Brake Integrated Hydraulic Actuation System Master Cylinder

1983-02-01
830412
This paper presents the design and operation of a new stepped bore master cylinder (fast-fill) which also integrates the rear brake proportioning valves and brake failure warning device in one major assembly. This design optimizes weight, performance and package together with several unique design features. It incorporates a combination of a plastic reservoir, permanent mold aluminum body, steel pistons, and minaturized steel proportioning valves resulting in a significant weight and cost reduction versus equivalent hydraulic actuation systems.
Technical Paper

Collaborative Development of Lightweight Metal and Alloys for Automotive Applications

2002-06-03
2002-01-1938
In September 1993, the Partnership for a New Generation of Vehicles (PNGV) program, initiated a cooperative research and development (R&D) program between the federal government and the United States Council Automotive Research (USCAR) to develop automotive technologies to reduce the nation's dependence on petroleum and reduce emissions of greenhouse gases by improving fuel economy. A key enabler for the attainment of these goals is a significant reduction in vehicle weight. Thus the major focus of the PNGV materials program is the development of materials and technologies that would result in the reduction of vehicle weight by up to 40%. The Automotive Lightweighting Materials (ALM) Program in the Office of Advanced Automotive Technologies (OAAT) of the Department of Energy (DOE), the PNGV Materials Technical Team and the United States Automotive Materials Partnership (USAMP) collaborate to conduct research and development on these materials.
X