Refine Your Search

Topic

Search Results

Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Journal Article

An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models

2010-04-12
2010-01-1174
For urea Selective Catalytic Reduction (SCR) systems, adaptive control is of interest to provide a capability of maintaining high NOx conversion efficiency and low ammonia slip in the presence of uncertainties in the system. In this paper, the dynamics of the urea SCR system are represented by a control-oriented model which is based on a linear transfer function, with parameters dependent on engine operating conditions. The parameters are identified from input-output data generated by a high fidelity full chemistry model of the urea SCR system. The use of the full chemistry model facilitated the representation of the dynamics of stored ammonia (not a directly measurable parameter) as well as post SCR NOx and ammonia slip. A closed-loop Proportional-plus-Integral (PI) controller was first designed using the estimate of stored ammonia as a feedback signal.
Technical Paper

An Open Versus Closed Architecture for Multimedia Systems

2000-11-01
2000-01-C065
For many years, carmakers have developed unique system designs to gain a competitive advantage using some unique technology or an optimization of a design to cut costs or improve quality. This leads to continual increase in complexity, long development times and high development costs. A common platform, based on an "open architecture,'' provides a solution for many of the problems associated with the conventional automotive approach to electrical/electronic system designs. The PC industry is a prime example of how an open architecture can provide benefits to the consumer, manufacturers of software and hardware components, as well as complete system integrators. The PC, based on the initial IBM computer developed in the early eighties, has become a de facto standard that has survived 20 years of fast and dramatic changes in the fundamental technologies used within the platform.
Technical Paper

Archetypal Vehicle Dynamics Model for Resistance Rollover Prediction

2010-04-12
2010-01-0715
Nowadays is a common sense the importance of the CAE usage in the modern automotive industry. The ability to predict the design behavior of a project represents a competitive advantage. However, some CAE models have become so complex and detailed that, in some cases, one just can not build up the model without a considerable amount of information. In that case simplified models play an important role in the design phase, especially in pre-program stages. This work intends to build an archetypal vehicle dynamics model able to predict the rollover resistance of a vehicle design. Through the study of a more complex model, carried out in Adams environment, it was possible to identify the key degrees of freedom to be considered in the simplified model along with important elements of the suspension which are also important design factors.
Technical Paper

Capsule Torquemeter Development

1976-02-01
760746
This report concerns the development of a small radio-telemetry torquemeter package intended to replace a current slip ring driveshaft torque meter system. Included in this report is a package description, a comparative test report and application recommendations. The torquemeter package developed can be used in any driveshaft, vehicle or otherwise, in place of a standard universal joint. Package constituents are a strain gaged universal joint cross and telemetry consisting of a modern FM transmitter and FM receiver. Transmitter power is available in battery form, or an inductive power supply can be built into the transmitter and receiver. The package was installed in series with a slip ring unit to conduct a comparative test utilizing both power supplies. Test results were not influenced by power supply and indicate identical data.
Technical Paper

Chassis Dynamometer Simulation of Road Noise

1997-05-20
971893
This paper describes experimental methods for simulating and analyzing road noise using an artificial road surface mounted to a chassis dynamometer. The nature of the relationship of road noise to road surface is discussed, including the nature of sound produced by the artificial surface mounted to the dynamometer. A method is described for converting the harmonics usually produced in a chassis rolls test into a continuous spectrum. This method also smoothes statistical fluctuations which arise due to the short length of road simulated. Dynamometer techniques are shown to be particularly effective in separating sound contributions from the front and rear suspension, and in separating contributions due to road surface and the tire tread.
Technical Paper

Cruising the Information Super Highway Via the Automobile

1997-02-24
970259
This paper proposes to utilize the Automobiles Entertainment Audio and Cellular Phone Systems as an information terminal to access the Information Super Highway better known as the WorldWide Web. As society moves to an ever increasing information based technology, there will be an ever expanding need to provide new ways and means of allowing access to the data on the WorldWide Web and Internet from many various locations and at a variety of different times. The authors recognize that rather large amounts of data and research have conducted and presented relative to obtaining information from and across the WorldWide Web. Additionally much work has been expended in the development of enhanced Driver Information Systems within the Automotive Industry.
Technical Paper

Design and Analysis of the Ford GT Spaceframe

2004-03-08
2004-01-1255
The Ford GT is a high performance sports car designed to compete with the best that the global automotive industry has to offer. A critical enabler for the performance that a vehicle in this class must achieve is the stiffness and response of the frame structure to the numerous load inputs from the suspension, powertrain and occupants. The process of designing the Ford GT spaceframe started with a number of constraints and performance targets derived through vehicle dynamics CAE modeling, crash performance requirements, competitive benchmarking and the requirement to maintain the unique styling of the GT40 concept car. To achieve these goals, an aluminum spaceframe was designed incorporating 35 different extrusion cross-sections, 5 complex castings, 4 smaller node castings and numerous aluminum stampings.
Technical Paper

Experimental Assessment Of Door Window Glass Smooth Operation And Tracking

1999-09-28
1999-01-3161
Since the door glass windows are used regularly, they have a great influence on the vehicle owner's perception of vehicle quality. Today's customers demand that moveable door window glass operates smoothly. Experimental methods have been developed to evaluate window glass smoothness and positional stability. This paper presents experimental results that quantify the chattering and positional stability of the window glass. For window glass smooth operation and tracking, the measurements were taken on glass chatter, glass velocity, motor current, motor voltage, and glass stall force. The change in glass position was measured on the vehicle during several stages of four poster durability testing to evaluate window glass positional stability during road induced vibrations. Using these experimental methods, the designers should be able to evaluate several window glass functional requirements and achieve cost/time savings.
Technical Paper

Gear Noise Reduction through Transmission Error Control and Gear Blank Dynamic Tuning

1999-05-17
1999-01-1766
Gear whine can be reduced through a combination of gear parameter selection and manufacturing process design directed at reducing the effective transmission error. The process of gear selection and profile modification design is greatly facilitated through the use of simulation tools to evaluate the details of the tooth contact analysis through the roll angle, including the effect of gear tooth, gear blank and shaft deflections under load. The simulation of transmission error for a range of gear designs under consideration was shown to provide a 3-5 dB range in transmission error. Use of these tools enables the designer to achieve these lower noise limits. An equally important concern is the dynamic mesh stiffness and transmissibility of force from the mesh to the bearings. Design parameters which affect these issues will determine the sensitivity of a transmission to a given level of transmission error.
Technical Paper

Identification of the Optimum Vehicle Class for the Application of 42v Integrated Starter Generator

2000-11-01
2000-01-C073
Today nearly all automotive manufacturers are developing motor-generator systems for improved fuel economy by implementing idling-stop and other power train enhancements. It is said that powertrain technology has always pioneered the development of automotive electronic control throughout history. The integrated starter generator (ISG) promises to expand the scope of powertrain control further through fuel economy improvement, emissions reduction, longitudinal vehicle dynamics improvement and customer feature enhancements. At the present time the cost imposed by usage of an ISG system is very high due mainly to its need for a power optimized 42V battery and high power electronics. This paper takes a critical look at the vehicle benefits attributable to ISG and its implementation costs over various vehicle classes.
Technical Paper

Interactive Computer Simulation of Drivetrain Dynamics

1985-05-15
850978
Computer simulations of vehicle dynamics can be a useful investigative tool in drive-ability and NVH studies. As the present work demonstrates, oscillations of the drive-train under steady-state and transient conditions are amenable to mathematical analysis, especially in the torsional mode. Simulations of such a system with a lock-up torque converter are shown with emphasis on tip-in response, transmissibility of engine firing pulsations and self-excited oscillations. In particular, the method of interactive simulation is shown to be an effective design-aid tool in the investigation of drivetrain vibrations.
Technical Paper

Internal Pressure Measurement for Sealed Electrical Connectors on Automotive Wire Harnesses: A method to improve Seal Plug Design

2013-04-08
2013-01-0398
Real-time pressure measurement inside sealed electrical connectors has been achieved using a new experimental approach. This approach has significant benefits to designers of connectors and the seals used to waterproof the connectors. The seal designer needs to know what pressure is in the connector but until now, pressure measurements were inaccurate due to the slow response time of the equipment. The result was that a peak in pressure of less than 1 second duration would be not recorded. This lack of accurate pressure data has resulted in overdesigned seal plugs - to compensate for the unknowns in testing - and potentially connectors that do not seal as well as required. With the new experimental technique described in this paper, data sampling rates have been increased to 100 samples per second with high accuracy. The new technique uses a portable micro pressure transducer that has been repackaged to fit where a connector wire normally fits.
Technical Paper

Laboratory Tire Wear Simulation Process Using ADAMS Vehicle Model

1996-02-01
961001
Computer simulation technology coupled with indoor laboratory facilities is being used in the automotive industry to provide up-front assessment of vehicle performance. This paper presents a technique to evaluate passenger vehicle tire wear performance as related to suspension and tire design early in the design process. Motivation for developing this tool is to optimize suspension and tire design to tire wear early in the design process. This approach has resulted in reductions in vehicle development time, dependency on outdoor testing and the need for expensive prototype vehicles. A full vehicle ADAMS model of a production vehicle is used to animate vehicle suspension kinematic motions, and dynamic tire forces of vehicle maneuvers for a preselected outdoor tire wear route. Time histories of five vehicle parameters are generated: radial force, slip angle or lateral force, camber, velocity and driving and braking torques.
Technical Paper

Measures to Quantify the Sharpness of Vehicle Closure Sounds

1997-05-20
971910
Impulsive sound events (i.e. door closing) are often characterized as being undesirably sharp sounding. A high degree of perceived sharpness is normally related to large amounts of high frequency energy relative to the low frequency energy. In this project third octave data generated from a filterbank was used to calculate the center of gravity (cg) of the third octave bands. The result is the frequency corresponding to the centroid of the third octave data. Sounds with substantial high frequency energy have a centroid location that occurs at a higher frequency. The mean of the third octave cg over the duration of the transient event was investigated, in addition to sharpness as defined by Aures [1] and calculated on a commercially available analyzer. Correlation analyses to subjective data indicate that the mean third octave cg and the commercially available method produce comparable results for the vehicle closure sounds studied here.
Technical Paper

Passive Safety Technologies and Belted ATD Neck Loads in Rollover Events

2010-04-12
2010-01-1008
Two rigid rollover test devices were constructed to have the approximate dimensions, mass and inertial properties of a mid-sized Car and Sport Utility Vehicle (SUV). The rigid devices were used to generate vehicle and occupant responses from a series of laboratory rollover tests. For each rigid rollover test, a deceleration sled was used to subject each rigid vehicle to nearly identical lateral speeds and decelerations. The rigid vehicles were limited to a single roll by tethering the vehicles to the deceleration cart. The vehicle's roll rate, roll angle, lateral acceleration and Anthropomorphic Test Devices (ATD) neck responses generated from the rigid SUV were compared to the responses of a full vehicle production SUV under similar test conditions. The rigid SUV and Car devices were then used to examine the effects of activating safety belt pre-tensioning systems and roof mounted side curtain airbags at various times on ATD neck forces and moments.
Technical Paper

Real-time Determination of Driver's Handling Behavior

2015-04-14
2015-01-0257
This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Stochastic Simulation Method for CAE Vehicle Dynamics Evaluation and Design Robustness Analysis

2010-10-06
2010-36-0251
This work presents a statistical approach for simulation based on Monte Carlo method. As an exercise of the method a CAE vehicle dynamics model was specifically created to evaluate the likelihood to meet a given target driving a maneuver for given inputs variations. In the exercise, three different inputs were chosen as stochastic inputs (also called noise factors) and all relevant information about their statistics has been raised, based in components information. The chosen inputs are: front/rear dampers curves, front/rear ride heights and tire surface temperature. A brief description of the Monte Carlo technique is presented. The choice of this method is due to the reduced number of simulations required to have a given accuracy in comparison with other approaches, especially for multivariable system. As output variable for the exercise, the tire patch height was chosen and the resulting probability density function of it is presented.
X