Refine Your Search

Topic

Author

Search Results

Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

A Comparative Study of the Fatigue Behavior of Spot Welded and Mechanically Fastened Aluminum Joints

1995-02-01
950710
The cyclic behavior of single overlap aluminum joints joined through a number of different methods has been investigated using Alcan 5754-O, an alloy that potentially could be used in structural applications. Overlap shear tests of spot welded, clinched and riveted joints are compared on the basis of their fatigue performance. The fatigue response of the spot welded joint was the baseline to which the other fasteners were compared. Test results showed an improvement of approximately 25% for both the mechanical clinch joints and aluminum rivets in fatigue strength at 106 cycles. The most significant improvement in fatigue strength of 100% was found for the self piercing rivets at 106 cycles. The failure behavior of the various joining methods is discussed as well as the surface appearance.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A New Test for Catalyst Oxygen Storage Which Correlates with Catalyst Performance on the Vehicle

1994-10-01
942071
A new laboratory test for measuring catalyst oxygen storage capacity has been developed. The test accurately predicts catalyst performance on the vehicle during transient A/F excursions and correlates well with vehicle CO and Nox tailpipe emissions. The test was subsequently used to facilitate improved oxygen storage capacity for new Pd-only washcoat formulations.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Technical Paper

A Review of the Dual EGO Sensor Method for OBD-II Catalyst Efficiency Monitoring

1994-10-01
942057
This paper provides an overview of the dual EGO sensor method for OBD-II catalyst efficiency monitoring. The processes governing the relationship between catalyst oxygen storage, HC conversion efficiency, and rear EGO sensor response are reviewed in detail. A simple physical model relating catalyst oxygen storage capacity and rear EGO sensor response is constructed and used in conjunction with experimental data to provide additional insight into the operation of the catalyst monitor. The effect that the catalyst washcoat formulation has in determining the relationship between catalyst oxygen storage capacity and HC conversion efficiency and its impact on the catalyst monitor is also investigated. Lastly, the effects of catalyst failure mode, fuel sulfur, and the fuel additive MMT on the catalyst monitor's ability to properly diagnose catalyst function are discussed.
Technical Paper

A Strategy for The Selection and Design of Ergonomically Sound Material Handling Systems

1997-05-12
971761
Manual Materials Handling has been historically recognized as one of the more prevalent causes for work related lost time injuries. Many manufacturing facilities use Material Handling Systems (lift/ tilt tables, hoists, articulated arms), often to alleviate ‘ergonomic’ stressors as well as to optimize production. If not used appropriately, Material Handling Systems can create new ergonomic concerns, or in some cases increase the physical demands of a job. A strategy designed to optimize the fit between the operator, the appropriate equipment and the operation is addressed in this paper.
Technical Paper

Additive Interactions and Depletion Processes in Fuel Efficient Engine Oils

1997-05-01
971694
Fuel efficient engine oils containing molybdenum dialkyldithiocarbamate, MoDTC, friction modifiers can lose their ability to reduce friction during service prematurely. Depletion processes involving antioxidant reactions and interactions with other additives play important roles in determining the performance of these formulations. This paper describes results from investigations of the antioxidant reactions of MoDTC alone and in combinations with zinc dialkyldithiophosphates and a phenolic antioxidant. The effect of supplementary ashless antioxidant on retention of friction reducing capability is described.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Technical Paper

An Ultrasonic Technique for Measuring the Elastic Constants of Small Samples

1995-02-01
950897
Using instrumentation designed for the ultrasonic measurement of thickness, a technique has been devised for measuring the isotropic elastic constants of small samples, i. e., samples 1 mm in thickness and a minimum of 5 mm in other dimensions. Young's modulus, the shear modulus and Poisson's ratio are calculated from measurements of density and ultrasonic shear and longitudinal wave velocities. Samples of valve train materials, including chill cast iron, low alloy steel, tool steel, stainless steel, a nickel-base superalloy, and a powder metal alloy were machined from components and analyzed. The magnitude of the measured values of the elastic constants are reasonable when compared with published values. The measurement error on all the constants is estimated to be less than 1%. Moduli determined by this method can be used in finite element analyses to improve designs.
Technical Paper

Analysis of Methods for Determining Sheared Edge Formability

2011-04-12
2011-01-1062
Imposing tensile stress on an edge of a sheet metal blank is a common condition in many sheet metal forming operations, making edge formability a very important factor to consider. Because edge formability varies greatly among different materials, cutting methods (and their control parameters), it is very important to have access to an experimental technique that would allow for quick and reliable evaluation of edge formability for a given case. In this paper, two existing techniques are compared: the hole expansion test and the tensile test. It is shown that the hole expansion test might not be adequate for many cases, and is prone to overestimating the limiting strain, because the burr on the sheared edge is typically smaller than what is observed in production. The tensile test represents an effective alternative to the hole expansion test. Advantages and disadvantages of each case are discussed.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Four-Point Bend Test Development and Evaluation

1996-02-01
960977
The ability to evaluate the bending fatigue behavior of carburized low alloy steels in a laboratory and relate these measurements to performance of high contact ratio helical gears is important to the design and development of transmissions. Typical methods of evaluating bending fatigue performance of carburized gear steels do not directly represent helical planetary gears because they lack the geometric and loading conditions of planetary pinions. The purpose of this study is twofold; 1) development of a lab fatigue test to represent the fatigue performance of planetary pinion gears tested in a dynamometer and 2) evaluation of the influence of alloy content on bending fatigue performance of two steel alloys. The steels under evaluation were modified 8620M and 4615M alloys machined into bend bars with a notch representing a gear root and carburized to a case depth of approximately 0.35 mm (using the same carburizing cycle as the planetary pinion gears).
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
Technical Paper

Brake Lining Mechanical Properties, Laboratory Specimen Studies

1979-02-01
790715
All automotive brake linings have mechanical strength and thermal expansion properties which vary with orientation. This paper describes laboratory equipment and test procedures which characterize lining strength and expansion behavior, using small specimens. A benchtop testing device is introduced which can be used to perform shear and tensile tests on lining samples and singly-riveted lining assemblies. Results are presented for a representative group of production and experimental linings. Applications are discussed.
Technical Paper

CRC Vapor Lock Technique Its Development and Application (Report of Volatility Group, Motor Vehicle Fuel, Lubricant, and Equipment Research Committee of the Coordinating Research Council, Inc.)

1963-01-01
630453
In 1958 the Coordinating Research Council conducted an extensive series of vapor lock road tests at a centralized location to study the effect of test variables on the hot fuel handling characteristics of passenger cars. Two years later, another test program was carried out at a common location to determine the hot fuel handling characteristics of a selected group of 1960 cars, employing the vapor lock survey technique developed in the 1958 program. The results obtained from the two programs indicate that this technique provides a satisfactory basis for defining the more severe vapor handling characteristics of automobiles in a relatively short time.
Technical Paper

Can All Engine Wear Be Trapped in a Can?

1953-01-01
530218
THE study of engine life, carried out by investigating engine wear in typical service, and by then striving to find the most effective ways of controlling it, forms the basis of this paper on contaminants in lubricants. The investigation involved a study of engine wear in 20,000 miles of operation typical of the average driver. The average driver was selected by using test cars from an employee transportation car pool. At the conclusion of the tests it was found that the use of the full-flow oil filter proved to be the best method for restricting engine wear caused by contaminants that get inside the engine. It was also shown that after successfully eliminating large, solid particles, further restriction of engine wear would depend upon the ability of the oil to lubricate, and upon the engine design to provide the oil supply in a manner suitable for lubrication of each part of the engine.
Technical Paper

Carbon Canister Development for Enhanced Evaporative Emissions and On-Board Refueling

1997-02-24
970312
Automotive fuel vapor emissions that would otherwise evaporate into the atmosphere are being captured in activated carbon vapor storage canisters. Fuel vapor is loaded into the canisters via a direct connection to the fuel tank vapor dome. Hydrocarbons are desorbed from the activated carbon into the engine combustion cylinders using engine intake vacuum. The carbon canister capacity requirements have increased in recent years in order to meet both Enhanced Evaporative Emission regulations and the Clean Air Act emission requirements for On-board Refueling Vapor Recovery (ORVR). The higher capacity requirements have generated the need for larger volume canisters that can meet the emission requirements and still be designed within the space and packaging limits of the vehicle application. This paper describes the simultaneous engineering approach used at Ford Motor Company to design a large volume cylindrical shaped carbon canister.
Technical Paper

Collaborative Development of Lightweight Metal and Alloys for Automotive Applications

2002-06-03
2002-01-1938
In September 1993, the Partnership for a New Generation of Vehicles (PNGV) program, initiated a cooperative research and development (R&D) program between the federal government and the United States Council Automotive Research (USCAR) to develop automotive technologies to reduce the nation's dependence on petroleum and reduce emissions of greenhouse gases by improving fuel economy. A key enabler for the attainment of these goals is a significant reduction in vehicle weight. Thus the major focus of the PNGV materials program is the development of materials and technologies that would result in the reduction of vehicle weight by up to 40%. The Automotive Lightweighting Materials (ALM) Program in the Office of Advanced Automotive Technologies (OAAT) of the Department of Energy (DOE), the PNGV Materials Technical Team and the United States Automotive Materials Partnership (USAMP) collaborate to conduct research and development on these materials.
Technical Paper

Comparison of Mean Stress Correction Methods for Fatigue Life Prediction

2000-03-06
2000-01-0778
In design for durability, it is generally believed that a compressive mean stress is beneficial and a tensile mean stress is detrimental. Quantitatively the effect of mean stress on fatigue life however is still inconclusive and may very well depend on both the material used and the loading conditions. Over the years, many models have been proposed to help predict mean stress effects. For example, in the long life region, Goodman's formula is widely used, while the Smith-Watson-Topper damage parameter seems the most popular for use in computerized local strain based fatigue tools. In this paper, several frequently cited mean stress correction methods together with the most recent crack closure based method are compared in various ways. Particular emphasis is given to the effect of yield level mean stresses, which has been traditionally neglected but is of practical importance to the ground vehicle industry.
X