Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improved Bag Mini-Diluter Sampling System for Ultra-Low Level Vehicle Exhaust Emissions

2000-03-06
2000-01-0792
The Bag Mini-diluter (BMD) is a proportional exhaust sampling system that is being studied as an improved measurement system for ultra-low level vehicle exhaust emissions. The traditional method for sampling vehicle exhaust has been the constant volume sampler (CVS) technique. This method dilutes the entire exhaust output from the vehicle, meters the mixture, and then takes a proportional sample for measurement. In contrast, the Mini-diluter sampling method meters a small sample of raw exhaust, and then dilutes this sample to a fixed dilution ratio. This approach offers new opportunities to improve the quality of the sample measurement at very low levels, which will be crucial for accurate vehicle exhaust emission measurements on vehicles that meet the ULEV and SULEV standards. A number of test programs have compared the performance of the Mini-diluter to the CVS on vehicles certified to Tier 1 and LEV standards, and the results demonstrated favorable correlation.
Technical Paper

Improved Low-Emission Vehicle Simulator for Evaluation of Sampling and Analytical Systems

2002-03-04
2002-01-0049
The Vehicle Exhaust Emissions Simulator was developed to evaluate the performance of vehicle emissions sampling and analytical systems. The simulator produces a representative tailpipe volume flow rate containing up to five emission constituents, injected via mass flow controllers (MFCs). Eliminating the variability of test results associated with the vehicle, driver, and dynamometer makes the simulator an ideal quality control tool for use in commissioning new test cells, checking data correlation between test cells, and evaluating overall system performance. Earlier vehicle emissions simulators being used in the industry were primarily for checking Constant Volume Samplers (CVSs) and Bag Benches but they did not have the ability to properly simulate tailpipe volume.
X