Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study of the Effects of Fuel Properties of Non-Petroleum Fuels on Diesel Engine Combustion and Emissions

1984-10-01
841334
A single cylinder indirect injection diesel engine was used to evaluate the emissions, fuel consumption, and ignition delay of non-petroleum liquid fuels derived from coal, shale, and tar sands. Correlations were made relating fuel properties with exhaust emissions, fuel consumption, and ignition delay. The results of the correlation study showed that the indicated fuel consumption, ignition delay, and CO emissions significantly correlated with the H/C ratio, specific gravity, heat of combustion, aromatics and saturates content, and cetane number, Multiple fuel properties were necessary to correlate the hydrocarbon emissions. The NOx emissions did not correlate well with any fuel property. Because these fuels from various resources were able to correlate succesfully with many of the fuel properties suggests that the degree of refinement or the chemical composition of the fuel is a better predictor of its performance than its resource.
Technical Paper

A Preliminary Research on Turbulent Flame Propagation Combustion Modeling Using a Direct Chemical Kinetics Model

2013-09-08
2013-24-0023
The present work focused on modeling turbulent flame propagation combustion process using a direct chemical kinetics model. Firstly, the theory of turbulent flame propagation combustion modeling directly using chemical kinetics is given in detail. Secondly, two important techniques in this approach are described. One technique is the selection of chemical kinetics mechanism, and the other one is the selection of AMR (adaptive mesh refinement) level. A reduced chemical kinetics mechanism with minor modification by the authors of this paper which is suitable for simulating gasoline engine under warm up operating conditions was selected in this work. This mechanism was validated over some operating conditions close to some engine cases. The effect of AMR level on combustion simulation is given, and an optimum AMR level of both velocity and temperature is recommended.
Technical Paper

A Study of Ignition System Effects on Power, Emissions, Lean Misfire Limit, and EGR Tolerance of a Single-Cylinder Engine-Multiple Spark versus Conventional Single Spark Ignition

1974-02-01
740188
The characteristics of multiple spark ignition systems with respect to engine performance, emissions, lean misfire, and tolerance to exhaust gas recirculation (EGR) have been investigated using a carbureted single-cylinder engine. The results, which were compared to those obtained with a standard single spark ignition system, show that both lean misfire limit and EGR tolerance are extended with the multiple spark system. The amount of extension varies with engine load, being largest at the lighter loads studied. Engine power and emissions at non-misfiring conditions are the same with both ignition systems.
Technical Paper

A Toxicological Evaluation Of Potential Thermal Degradation Products of Urea

2001-09-24
2001-01-3621
The purpose of this paper is to make a preliminary assessment of the potential toxicity of compounds that might be emitted from diesel vehicles using urea/SCR technology. The use of urea as a reductant in the removal of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least seven thermal decomposition products and unreacted urea from the tail-pipe. These compounds include: urea, ammonia, cyanate ion, biuret, cyanuric acid, ammelide, ammeline, and melamine. The toxicity data base for these compounds, in general, is poor. In addition, there have been few, if any, studies examining the inhalation route of exposure - the most likely route of exposure for people from vehicle exhaust. The measurement and identification of these compounds from the exhaust of urea/SCR- equipped vehicles is needed to prioritize the kinds of health effects studies required to understand the toxicity of these compounds.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles

1995-10-01
952493
Future European air quality standards for light duty diesel vehicles will include stringent NOx emission regulations. In order to meet these regulations, a lean NOx catalyst system may be necessary. Since the catalytic removal of NOx is very difficult with the large concentration of oxygen present in diesel exhaust, a reductant is usually added to the exhaust to increase the NOx conversion. This paper describes a lean NOx catalyst system for a Transit light-duty truck which uses a reductant solution of urea in water. In this work, a microprocessor was used to vary the amount of the reductant injected depending on the operating conditions of a 2,5 L naturally aspirated HSDI engine. The NOx conversions were 60% and 80% on the current European driving cycle and the U.S. FTP cycles, respectively. Data on the emissions of HC, CO, NOx, particulate mass and composition, individual HC species, aldehydes, PAH and most HC species were evaluated.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

2001-09-24
2001-01-3509
We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Continuous Mass Spectrometric Determination of Nitric Oxide in Automotive Exhaust

1966-02-01
660116
Three techniques for the measurement of the oxides of nitrogen in automotive exhaust were evaluated. These included a “nitrous fume” analyzer, a gaseous NO2 colorimeter, and a movable mass spectrometer. All data obtained were compared to data from currently accepted wet chemical methods, the phenoldisulfonic acid and the “modified” Saltzman. Of the techniques evaluated, the mass spectrometer analysis of NO has been found to be the most useful for the study of nitrogen oxides in engine exhaust. The high cost of wet chemical analysis has indicated a need for an improved and continuous analytical method. The mass spectrometer approach measures NO within seconds of its discharge, thus minimizing any reactions prior to measurement.
Technical Paper

Control-oriented Reduced-order Models for Urea Selective Catalytic Reduction Systems Using a Physics-based Approach

2011-04-12
2011-01-1326
Urea-selective catalytic reduction (SCR) after-treatment systems are used for reducing oxides of nitrogen (NOx) emissions in medium and heavy duty diesel vehicles. This paper addresses control-oriented modeling, starting from first-principles, of SCR after-treatment systems. Appropriate simplifications are made to yield governing equations of the Urea-SCR. The resulting nonlinear partial differential equations (PDEs) are discretized and linearized to yield a family of linear finite-dimensional state-space models of the SCR at different operating points. It is further shown that this family of models can be reduced to three operating regions. Within each region, parametric dependencies of the system on physical mechanisms are derived. Further model reduction is shown to be possible in each of the three regions resulting in a second-order linear model with sufficient accuracy.
Technical Paper

Development of a Gasoline Engine System Using HCCI Technology - The Concept and the Test Results

2002-10-21
2002-01-2832
Homogeneous-charge compression-ignition (HCCI) technology has high potential to significantly reduce fuel consumption and NOx emissions over PFI engines. Control of the HCCI combustion process over the full range of conventional PFI operating conditions, however, has been a challenge. This study describes an HCCI-SI dual-mode engine system proposal based on new approaches to optimize the engine performance. A 0.658L single-cylinder engine was built and tested using these concepts. The engine was operated in HCCI mode from idle to 5.5 bar NMEP and up to 4750 rpm. NSFC in HCCI mode was about 175 g/kWh over most of the operating range except at very low load or near the high load boundary. At a part load of 1500 rpm and an equivalent BMEP of 2.62 bar, net indicated fuel efficiency was 50% higher than PFI engines and 30% higher than a prototype SC-DISI engine.
Technical Paper

Development of an Al2O3/ZrO2-Composite High-Accuracy NOx Sensor

2010-04-12
2010-01-0041
In 1999, the first generation NOx sensor from NGK Spark Plug, Co., Ltd. was commercialized for use in gasoline LNT NOx after-treatment systems [ 1 ]. Since then, as emissions regulations and OBD requirements have become more stringent, the demand for a high-accuracy NOx sensor with fast light-off has increased, particularly for diesel after-treatment systems. To meet such market demands, NGK Spark Plug, Co., Ltd. has developed, in collaboration with Ford Motor Company, a second generation NOx sensor.
Technical Paper

Diesel EGR Cooler Fouling with Ni-Fe-Cr-Al DPF at Freeway Cruise

2010-10-05
2010-01-1955
This study investigates the effect of diesel particulate filters (DPF) on the performance of exhaust gas recirculation (EGR) coolers. EGR coolers were tested with and without the use of a DPF and their measured performances were compared. The exhaust gas was filtered using a Ni-Fe-Cr-Al metallic foam wall flow diesel particulate filter. The DPFs used in this investigation had very low Space Velocity (SV) characteristics in order to minimize the effect of filtration on the pressure drop. Two different measurement methods were employed to determine particulate matter (PM) emission levels at locations before and after the DPF. The first method involved the collection of PM on quartz filters followed by thermal analysis of the filters to monitor the removal of soot, semi-volatile organics, and sulfate across the DPF. The second method measured the time resolved PM mass in the exhaust with a Dekati Mass Monitor.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation, Part 1

1995-12-01
952763
A fuel cell is an electrochemical engine which converts fuel and oxidant electrochemically into water, other chemical products and electricity. At present, depending on the electrolytic conducting media, five fuel cell types are recognized, the alkaline fuel cell (AFC), the proton exchange membrane fuel cell (PEMFC), the phosphoric acid fuel cell (PAFC), the molten carbonate fuel cell (MCFC), and the solid oxide fuel cell (SOFC). Various types of hydrogen containing fuels can be used in any of the fuel cells, however only the hydrogen-air fueled fuel cell operating at low to medium temperatures (0-450 C) can be considered to meet the zero emission vehicle (ZEV) requirements. Byproducts of the electrochemical reaction of the fuel cells when hydrocarbons and air are used include carbon monoxide, carbon dioxide and at higher temperatures nitrogen oxide.
Technical Paper

Dynamometer Test Procedures for Three-Way Catalyst Screening

1977-02-01
770371
Procedures are described for rapidly aging and for testing three-way catalysts on an engine dynamometer which are relatable to actual vehicle aging and CVS testing. The accelerated aging cycle consists of a modification of the AMA durability driving cycle; testing consists of the measurement of HC, CO and NOx conversion as a function of A/F with superimposed perturbations which simulate limit cycle variations of A/F in a closed-loop fuel control system.
Technical Paper

EGR Cooler Performance Monitor - Heuristic Approaches Using Temperature Measurement

2011-04-12
2011-01-0707
This paper investigates model free approaches to monitor the Exhaust Gas Recirculation (EGR) for a diesel engine equipped with EGR cooler and EGR cooler bypass valve. A conventional way of monitoring the EGR cooler is a model based approach which involves modeling the EGR cooler effectiveness and compares the modeled (estimated) EGR cooler effectiveness (or EGR cooler downstream temperature) and the measured EGR cooler effectiveness (or EGR cooler downstream temperature). The model based approach has the advantage of being portable across many different cooler configurations, but it requires modeling/calibration efforts and necessary temperature measurements. The EGR cooler downstream temperature serves several roles. It can be used together with the fresh air temperature to calculate the charge air temperature. It also can be utilized to monitor the performance of the EGR cooler as mentioned above.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
X