Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Challenges and Approaches in Connected Vehicles Data Wrangling

2017-03-28
2017-01-0069
This manuscript compares window-based data imputation approaches for data coming from connected vehicles during actual driving scenarios and obtained using on-board data acquisition devices. Three distinct window-based approaches were used for cleansing and imputing the missing values in different CAN-bus (Controller Area Network) signals. Lengths of windows used for data imputation for the three approaches were: 1) entire time-course for each vehicle ID, 2) day, and 3) trip (defined as duration between vehicle's ignition statuses ON to OFF). An algorithm for identification of ignition ON and OFF events is also presented, since this signal was not explicitly captured during the data acquisition phase. As a case study, these imputation techniques were applied to the data from a driver behavior classification experiment.
Technical Paper

Driver Identification Using Vehicle Telematics Data

2017-03-28
2017-01-1372
Increasing number of vehicles are equipped with telematics devices and are able to transmit vehicle CAN bus information remotely. This paper examines the possibility of identifying individual drivers from their driving signatures embedded in these telematics data. The vehicle telematics data used in this study were collected from a small fleet of 30 Ford Fiesta vehicles driven by 30 volunteer drivers over 15 days of real-world driving in London, UK. The collected CAN signals included vehicle speed, accelerator pedal position, brake pedal pressure, steering wheel angle, gear position, and engine RPM. These signals were collected at approximately 5Hz frequency and transmitted to the cloud for offline driver identification modeling. A list of driving metrics was developed to quantify driver behaviors, such as mean brake pedal pressure and longitudinal jerk. Random Forest (RF) was used to predict driver IDs based on the developed driving metrics.
X