Refine Your Search

Topic

Author

Search Results

Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Technical Paper

An Investigation into the Traction and Anti-Lock Braking System Control Design

2020-04-14
2020-01-0997
Wheel slip control is crucial to active safety control systems such as Traction Control System (TCS) and Anti-lock Braking System (ABS) that ensure vehicle safety by maintaining the wheel slip in a stable region. For this reason, a wide variety of control methods has been implemented by both researchers and in the industry. Moreover, the use of new electro-hydraulic or electro-mechanical brakes, and in-wheel electric motors allow for a more precise wheel slip control, which should further improve the vehicle dynamics and safety. In this paper, we compare two methods for wheel slip control: a loop-shaping Youla parametrization method, and a sliding mode control method. Each controller is designed based on a simple single wheel system. The benefits and drawbacks of both methods are addressed. Finally, the performance and stability robustness of each controller is evaluated based on several metrics in a simulation using a high-fidelity vehicle model with several driving scenarios.
Technical Paper

Analytical Study on Electric Motor Whine Radiated from Hybrid Vehicle Transmission

2017-03-28
2017-01-1055
The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many automakers to accelerate hybrid and electric vehicle development. Generally hybrid and electric vehicles create less noise due to their compact engines (or no engine). However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from the transmission in a hybrid vehicle. The analysis includes two stages. Firstly, a detailed finite element (FE) model of the transmission is constructed, and case surface velocities are calculated utilizing motor electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
Journal Article

Calibration and Demonstration of Vehicle Powertrain Thermal Management Using Model Predictive Control

2017-03-28
2017-01-0130
Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Control of Oxygen for Thermal Management of Diesel Particulate Filters

2002-03-04
2002-01-0427
A control strategy is presented to limit the rate of heat release by Diesel Particulate Filters (DPF) during regeneration reactions between oxygen and the collected soot. Heat release is managed by limiting the oxygen supplied to the DPF, which limits the rate of the regeneration reaction. Three actuators are used to control the amount of oxygen flowing in the exhaust system: an exhaust gas re-circulation (EGR) valve, an intake throttle (ITH), and a hydrocarbon injector located upstream of the DPF in the exhaust system. The EGR valve and ITH are low-bandwidth actuators that control slowly varying changes in oxygen flow, while the hydrocarbon injector is a high-bandwidth actuator that controls the corresponding fast changes in oxygen flow.
Technical Paper

Current Harmonics, Torque Ripple and Whine Noise of Electric Machine in Electrified Vehicle Applications

2017-03-28
2017-01-1226
Noise and Vibration (NVH) characteristic of an electric machine (e-Machine) is the outcome of complex interaction between source level disturbances and the surrounding structure to which the e-Machine is attached. Key e-Machine metrics that objectively quantify source level disturbance include torque ripple and radial electro-magnetic forces. These disturbances can radiate directly from the e-Machine housing (air-borne component) and also can be transmitted through the structural attachments like stator bolts, stator ring, powertrain mounts etc. (structure-borne component). In the e-machine driven by PWM switching inverter, current is not perfectly sinusoidal but contain different level of harmonics. Current harmonics impact Torque ripple, which in turn would translate into undesirable noise and vibration. There is very limited literature referencing the influence of current harmonics on torque ripple and e-machine NVH.
Technical Paper

Design of a SiC Based Variable Voltage Converter for Hybrid Electric Vehicle

2019-04-02
2019-01-0605
Variable Voltage Converter (VVC) is adopted in Power-Split structure of hybrid electric vehicles (HEVs) to optimize the Electric-Drive (e-Drive) system performance. With the wider availability of Silicon Carbide (SiC) power semiconductor for automotive applications, there are new opportunities to further optimize and improve performance of VVC, e.g. lower power loss, smaller size, and lighter weight, comparing to use traditional Silicon (Si) IGBT and diode. In this paper, a SiC based VVC is designed, prototyped, and evaluated. In order to maximize the benefits of SiC power devices in VVC application, each key component is carefully designed and selected, including SiC power module, power capacitor, and power inductor. The characterization and evaluation results demonstrate the benefits of advanced SiC devices in VVC design optimization, and such benefits quantified in this paper.
Journal Article

Electric Water Cooling Pump Sensitivity Based Adaptive Control

2017-03-28
2017-01-0602
With the trending electrification of vehicle accessory drives brings new control concepts useful in many cases to optimize energy management within the powertrain system. Considering that direct engine drives do not have as much flexibility as independent electric drives, it is apparent that several advantages are to be expected from electric drives. New developed high efficient electric drives can be implemented when considering many vehicle sub-systems. Combinations of continuous varying and discrete flow control devices offer thermal management opportunities across several vehicle attributes including fuel economy, drivability, performance, and cabin comfort. Often new technologies are integrated with legacy systems to deliver maximum value. Leveraging both electrical and mechanical actuators in some cases presents control challenges in optimizing energy management while delivering robust system operation.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors

2021-04-09
2021-01-5047
In this paper, a novel methodology of nonlinear control is used, and a passivity-based control of contractive port-controlled Hamiltonian (PCH) systems is applied to a permanent magnet synchronous motor (PMSM). This methodology, also called “tIDA-PBC” (Trajectory Injection and Damping Assignment—Passivity-Based Control), uses passivity-based control of PCH systems “IDA-PBC” and exploits the properties of contractive Hamiltonian systems, resulting in a closed loop with its contractive system desired dynamics, thus obtaining an exponential trajectory tracking without relying on the error coordinates. In this system, a few steps are proposed in order to divide and modularize the methodology so it can be redesigned or reapplied in other systems by the reader. First, we define the model and set the way to solve the “matching equation.” Then the feasible and reference trajectories are obtained.
Technical Paper

Fan Shroud Design for Low Speed Damageability

2017-03-28
2017-01-1300
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
Technical Paper

FordS Zero Emission P2000 Fuel Cell Vehicle

2000-11-01
2000-01-C046
The P2000 Fuel Cell Electric Vehicle developed by Ford Motor Company is the first full-performance, full-size passenger fuel cell vehicle in the world. This development process has resulted in a vehicle with performance that matches some of today's vehicles powered by internal combustion engines. The powertrain in Ford's P2000 FCEV lightweight aluminum vehicle consists of an Ecostar electric motor/transaxle and a fuel cell system developed with XCELLSiS-The Fuel Cell Engine Company (formerly dbb Fuel Cell Engines, Inc.). Ballard's Mark 700 series fuel cell stack is a main component in the fuel cell system. To support this new FCEV, Ford has constructed the first North American hydrogen refueling station capable of dispensing gaseous and liquid hydrogen. On-going research and development is progressing to optimize fuel cell vehicle performance and refueling techniques.
Technical Paper

Graphene: an overview of technology in the electric vehicles of the future

2023-02-10
2022-36-0100
In recent years there has been an increase in the development of vehicles that use alternative energy sources, more specifically electric vehicles, intending to establish the transition from combustion engines, bringing to the automotive chain a reduction in the consumption of fossil fuels. Electrified vehicles help to improve air quality by drastically reducing the emission of harmful gases and contributing to a considerable improvement in sound quality, due to the use of their silent electric motors. A material allied to these alternative technologies is graphene, few layers (usually up to 6) of Carbon atoms arranged in a hexagonal and crystalline form in a two-dimensional plane lattice. Its unique chemical structure allows it to share its exceptional properties with other materials, making it a strong candidate to meet the needs and improve products of the automotive sector.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Technical Paper

Implementing Thermoelectrics for Media Thermal Management in Automotive Radios

2006-04-03
2006-01-1040
A continuous demand for added multimedia features in the automotive audio systems not only requires adequate cooling of the internal electronics, but also the media itself. Thermal engineers focus their efforts only on keeping the electronics below thresholds by conventional methods such as internal fans, heat sinks, etc., while overlooking the CD media. The environment within the instrument panel (IP) poses additional challenge in maintaining the media at a temperature level that is comfortable to the human touch. Fans that would be a natural choice in such situations, could cause noise audible to the customer and thus create a new problem. A solid-state cooling device that uses Thermoelectric coolers (TEC) is proposed to keep the CD temperature low. The system comprises of TECs assembled with the hot side attached to a heat sink and the cold side attached to the radio top surface.
Journal Article

Integrated Regenerative Braking System and Anti-Lock Braking System for Hybrid Electric Vehicles & Battery Electric Vehicles

2020-04-14
2020-01-0846
This paper describes development of an integrated regenerative braking system and anti-lock brake system (ABS) control during an ABS event for hybrid and electric vehicles with drivelines containing a single electric motor connected to the axle shaft through an open differential. The control objectives are to recuperate the maximum amount of kinetic energy during an ABS event, and to provide no degraded anti-lock control behavior as seen in vehicles with regenerative braking disabled. The paper first presents a detailed control system analysis to reveal the inherent property of non-zero regenerative braking torque control during ABS event and explain the reason why regenerative braking torque can increase the wheel slip during ABS event with existing regenerative braking control strategies.
Technical Paper

Modeling Electric Motors with High Fidelity for Accurate eDrive NVH Simulation

2023-04-11
2023-01-0533
A sophisticated finite element analysis (FEA) method for modeling interior permanent magnet (IPM) electric motors is presented. Based on this method, a coupled structural-acoustic analysis procedure was developed to simulate the motor dyno vibroacoustic responses with improved accuracy and reliability for NVH (noise, vibration, and harshness) behavior prediction over a wide range of torques and frequencies under the operational electromagnetic forces. The proposed motor modeling and analysis method is detail-oriented with high fidelity in modeling the structure and complex material representation. To effectively deal with the motor stator core constructed with large numbers of electromagnetic laminae, the unit-cell approach was employed to derive the core material properties by homogenizing the laminated core as an equivalent orthotropic material. Meanwhile, the windings were modeled by capturing the precise geometry for accuracy improvement.
Journal Article

On the Development of CFD Methodology for Free-Falling Varnish Stream Modeling to Support EV Motor Manufacturing

2023-04-11
2023-01-0158
When manufacturing the stators in EV motors, stator wires are first coated with a layer of resin to provide primary insulation. After winding, impregnating varnish fills all voids within the windings and between the windings and lamination. In addition to electrically insulating the copper wires, another function of the varnish fill is to mechanically secure the copper wires from movement. The process is not complicated in terms of physics. In essence, the mechanics of the varnish flow is the balance of inertia force, viscous force, gravity and surface tension. However, understanding the fluid dynamics of the varnish flow is critical to predicting the quality of the varnish fill, which has a tremendous impact on motor performance. With the advancement of computational fluid dynamics (CFD), the industry can benefit greatly if the varnish trickling process can be tuned, without physical tryouts, to achieve optimal fill.
X