Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Bootstrap Approach to Training DNNs for the Automotive Theater

2017-03-28
2017-01-0099
The proposed technique is a tailored deep neural network (DNN) training approach which uses an iterative process to support the learning of DNNs by targeting their specific misclassification and missed detections. The process begins with a DNN that is trained on freely available annotated image data, which we will refer to as the Base model, where a subset of the categories for the classifier are related to the automotive theater. A small set of video capture files taken from drives with test vehicles are selected, (based on the diversity of scenes, frequency of vehicles, incidental lighting, etc.), and the Base model is used to detect/classify images within the video files. A software application developed specifically for this work then allows for the capture of frames from the video set where the DNN has made misclassifications. The corresponding annotation files for these images are subsequently corrected to eliminate mislabels.
Technical Paper

A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle

2004-03-08
2004-01-0303
Ford Motor Company has recently implemented a Hardware-In-the-Loop (HIL) testing system for a new, highly complex, hybrid electric vehicle (HEV) Electronic Control Unit (ECU). The implementation of this HIL system has been quick and effective, since it is based on proven Commercial-Off-The-Shelf (COTS) automation tools for real-time that allow for a very flexible and intuitive design process. An overview of the HIL system implementation process and the derived development benefits will be shown in this paper. The initial concept for the use of this HIL system was a complete closed-loop vehicle simulation environment for Vehicle System Controller testing, but the paper will show that this concept has evolved to allow for the use of the HIL system for many facets of the design process.
Technical Paper

A Generic Teaching Case Study for Teaching Design for Six Sigma

2006-04-03
2006-01-0501
There are several reasons why it can be daunting to apply Six Sigma to product creation. Foremost among them, the functional performance of new technologies is unknown prior to starting a project. Although, Design For Six Sigma (DFSS) was developed to overcome this difficulty, a lack of applicable in-class case studies makes it challenging to train the product creation community. The current paper describes an in-class project which illustrates how Six Sigma is applied to a simulated product creation environment. A toy construction set (TCS) project is used to instruct students how to meet customer expectations without violating cost, packaging volume and design-complexity constraints.
Journal Article

A Model Based Approach for Electric Steering Tuning to Meet Vehicle Steering Performance Targets

2017-03-28
2017-01-1493
Subjective steering feel tuning and objective verification tests are conducted on vehicle prototypes that are a subset of the total number of buildable combinations of body style, drivetrain and tires. Limited development time, high prototype vehicle cost, and hence limited number of available prototypes are factors that affect the ability to tune and verify all the possible configurations. A new model-based process and a toolset have been developed to enhance the existing steering development process such that steering tuning efficiency and performance robustness can be improved. The innovative method utilizes the existing vehicle dynamics simulation and/or physical test data in conjunction with steering system control models, and provides users with simple interfaces which can be used by either CAE or development engineers to perform virtual tuning of the vehicle steering feel to meet performance targets.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A New Experimental Methodology to Estimate Tire/Wheel Blocked Force for Road NVH Application

2005-05-16
2005-01-2260
Past studies have shown that NVH CAE tire model quality is not adequate to correctly capture a mid-frequency range (100-300 Hz). A new methodology has been developed to estimate tire forces that are independent of dynamic characteristics of vehicle suspension and rig test fixture. The forces are called tire blocked forces and defined as a force generated by a tire/wheel system whose boundary condition is constrained. The tire blocked force is estimated by removing the dynamic effect of the tire force measurement fixture. The blocked forces can be applied to CAE models to predict vehicle road NVH responses. This new method can also be used as a target setting tool. Tire suppliers can check the blocked tire forces from the rig testing data against a force target before they submit tires to automotive manufacturers for evaluations on a prototype vehicle.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

2006-04-03
2006-01-0537
Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

2009-04-20
2009-01-0471
The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Technical Paper

A Segregated Thermal Analysis Method for Liquid-Cooled Traction Batteries

2017-03-28
2017-01-0629
Thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) usually involves large models to accurately resolve small cooling channel details, and intensive computation to simulate drive-cycle transient solutions. This paper proposes a segregated method to divide the system into three parts: the cells, the cold plate and the interface between them. Each of the three parts can be separated and thermally characterized and then combined to predict the overall system thermal behavior for both steady-state and transient operating conditions. The method largely simplifies battery thermal analysis to overcome the limitations of using large 3D CFD models especially for pack level dynamic drive cycle simulations.
Technical Paper

A Steady State Vehicle Model to Predict Engine and Transmission Performance

1999-03-01
1999-01-0742
A steady state vehicle model is developed that will predict engine and automatic transmission operating conditions based on various vehicle configurations and operating conditions. The model provides a better understanding of the effects, including direction and magnitude, of changes in vehicle configuration and/or operating conditions on powertrain requirements. The model results can then be used as input into powertrain matching decisions. In general, the model will begin by determining vehicle road load requirements (wheel speed and torque) as a function of vehicle speed based on ambient, road, and vehicle inputs. Such road load requirement will then be cascaded into input and output requirements of the rear axle, transmission gearing, torque converter (locked and unlocked), and finally the engine. Wide open throttle engine torque data will also be translated into tractive effort at the wheels and resulting acceleration capability versus the vehicle road load requirements.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

A Technical Analysis of a Proposed Theory on Tire Tread Belt Separation-Induced Axle Tramp

2011-04-12
2011-01-0967
Recently, papers have been published purporting to study the effect of rear axle tramp during tread separation events, and its effect on vehicle handling [1, 2]. Based on analysis and physical testing, one paper [1] has put forth a mathematical model which the authors claim allows vehicle designers to select shock damping values during the development process of a vehicle in order to assure that a vehicle will not experience axle tramp during tread separations. In the course of their work, “lumpy” tires (tires with rubber blocks adhered to the tire's tread) were employed to excite the axle tramp resonance, even though this method has been shown not to duplicate the physical mechanisms behind an actual tread belt separation. This paper evaluates the theories postulated in [1] by first analyzing the equations behind the mathematical model presented. The model is then tested to see if it agrees with observed physical testing.
Technical Paper

A Test-Based Procedure for the Identification of Rack and Pinion Steering System Parameters for Use In CAE Ride-Comfort Simulations

2009-05-19
2009-01-2090
Current CAE modeling and simulation techniques in the time domain allow, by now, very accurate prediction of many ride-comfort performances of the cars. Nevertheless, the prediction of the steering wheel rotation vibration excited by, for instance, wheel unbalance or asymmetric obstacle impact, often runs into the difficulty of modeling the steering line with sufficient accuracy. For a classic rack and pinion, hydraulic assisted steering line, one of the challenges is to model the complex and non linear properties - stiffness, friction and damping - of the rack-rack case system. This paper proposes a rack model, thought for easy implementation in complex multi-body models, and an identification procedure of its parameters, based on measurements, in the operational range of the wheel unbalance excitation. The measurements have been gathered by specific tests on the components and the test set-up is also shown here.
Technical Paper

A Vehicle Model Architecture for Vehicle System Control Design

2003-03-03
2003-01-0092
A robust Vehicle Model Architecture (VMA) has been developed to support model-based Vehicle System Control (VSC) design work and, in general, model-based vehicle system engineering activities. It is based on a logical breakdown of the vehicle into key subsystems with supporting bus infrastructure for distribution of signals between subsystems. Primary physical interfaces between the top level subsystems have been defined. Subsystem models that comply with these interfaces can be easily plugged into the architecture for complete simulation of vehicle systems. The VMA encourages model re-use and sharing between project teams and, furthermore, removes key obstacles to sharing of models with suppliers.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

Acquisition of Transient Tire Force and Moment Data for Dynamic Vehicle Handling Simulations

1983-11-07
831790
This paper describes the issues encountered in using conventionally acquired tire test data for dynamic total vehicle handling simulations and the need for improved methodology. It describes the new test procedure that was used to acquire all three forces and three moments in a transient mode for a matrix of loads, slip and camber angles. A study of the test data supports the premises that the overturning moment, Mx, should not be neglected in dynamic simulations, and that the effects of camber should not be treated as only an independent, linearly additive, camber thrust. Instead of the conventional application of a bi-cubic regression fit to a six region data division, a new algorithm is applied. The data is divided differently into five regions in the α - Fz plane, and a variable format regression equation is applied as appropriate. The resulting regression coefficients matrix is readily usable in dynamic simulations, and is shown to have a superior curve fit to the test data.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

Air Bag Parameter Study with Out-Of-Position Small Female Test Devices

2000-06-19
2000-01-2204
The development of the Advanced Restraint System has lead to an innovative way in which we evaluate the systems effect on the occupant. This paper presents some initial investigation into the driver airbag system that consists of an inflator, cushion fold, tear seam pattern, and offset of the airbag cover to steering wheel rim plane. An initial DOE is reviewed to establish significant parameters and to identify equations for further investigation.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
X