Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Framework for Reliable and Durable Product Design

1996-08-01
961794
In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Brake System Regulations and Standards Review and Comparison Focused on Europe, NA and SA Markets

2017-09-17
2017-01-2534
Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
Technical Paper

Brakes Standards Interface Analysis Considering Brazilian, European and North American Regulations Focusing on Technologies Introduction

2015-05-13
2015-36-0027
It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time. As globally market is growing so fast as well new markets around the world, become fundamental the clearly understanding of these similarities, variants, peculiarities and correlated requirements.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

2004-11-16
2004-01-3411
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Considerations about Residual Stress Due to Stamping Process in Fatigue Life Prediction

2002-11-19
2002-01-3523
Usually in Computer Aided Engineering (CAE) analyses, Computer Aided Design (CAD) data is meshed and analyzed with regard to displacements and stresses. So far, it is not common to account for residual stresses due to the manufacturing process in these analyses. This work proposes a methodology based on simplified abaqus Standard/Explicit models to evaluate residual stresses due to stamping and bending manufacturing process in truck rails and suggests a methodology to use this residual stress data in truck frame CAE durability analysis making it possible to compare how different a predicted fatigue life can be when residual stresses are considered.
Technical Paper

Development of Full Air Pneumatic Suspension Type for Commercial Vehicles

2017-03-28
2017-01-1490
The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
Technical Paper

Development of Pneumatic Suspension Type Full Air for Commercial Vehicles

2016-05-11
2016-36-0069
The air suspension development and application has becoming increasingly applied also in commercial vehicles, offering to the driver more dynamic comfort as well as contributing to the reduction of impact loads on highways. Through this project pursuit show the analysis and application of an air suspension system for commercial tractor vehicles application. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension′s stiffness under different conditions of usage, laden and unladen. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain the vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions. For entire development were also used quality tools, considering the possible failure modes and effects as well as virtual simulation tools (Adams) and bench validations.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Evolution of the New Ford Aerostar Impact Extruded Aluminum Wheel

1984-11-01
841694
Ford's continued effort to improve fuel economy in automotive applications has emphasized the need for lightweight components that retain all the toughness associated with Ford truck vehicle characteristics. The application of an impact extrusion process to wheel design and manufacture, for Ford Aerostar, provides strength, performance and style more efficiently than other traditional processes. It results in a valuable 33% weight saving over comparable HSLA steel wheels, and provides the customer with uncompromised value. The Ford Aerostar Impact Extruded Aluminum Wheel was designed to be of one-piece construction, manufactured from a less than 1″ thick aluminum wafer-shaped blank. The process permits manufacture in half the steps of a conventional stamped steel wheel, and eliminates extensive machining required with forged or cast aluminum wheels.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Managing System Effects of Traction Bars Implemented on a Hotchkiss Suspension

2005-11-01
2005-01-3624
This paper describes the implementation effort behind adding a pair of suspension links between the axle and frame of a light truck with a Hotchkiss-type suspension. These links, referred to as anti-windup bars (or traction bars), were introduced into an existing system to improve NVH performance; however, doing so required modifications to maintain other vehicle attributes, including vehicle safety and durability life. The authors address the management of these attributes and related design decisions for the components involved, focusing on the conflicting requirements involved. Physical vehicle testing, using design revisions recommended by Finite Element (FE) simulations, was performed to confirm component performance and related system behavior. Test results suggested improvements to the FE models that were required to more closely approximate the vehicle's behavior.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

2017-11-07
2017-36-0294
In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.
Technical Paper

Methodology of Automatic Slack Brake Adjuster Definition Considering Foundation Brake System Characteristics

2017-05-24
2017-36-0004
S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
X