Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of a Cu-zeolite SCR Catalyst on the Performance of a Diesel LNT+SCR System

2009-04-20
2009-01-0285
Advanced Cu-zeolite based SCR (selective catalytic reduction) catalyst technologies were evaluated in a laboratory reactor as a component of a diesel LNT (lean NOx trap) plus in-situ SCR system (i.e., NH3 generation over the LNT vs injection via urea). New-generation LNT formulations, with lower desulfation temperatures and improved durability characteristics relative to previous LNTs, were also evaluated. The combined new-generation LNT+Cu-zeolite SCR systems showed a much wider temperature window of high NOx conversion compared to either LNT catalysts alone or LNT+SCR systems utilizing Fe-zeolite SCR catalysts. The new-generation Cu-zeolite SCR catalysts retained high activity even after repeated exposure to high-temperature rich DeSOx conditions in a laboratory 3-mode aging cycle simulating 120,000 mile vehicle driving.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
X