Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Ford GT Magnesium Instrument Panel Cross Car Beam

2005-04-11
2005-01-0341
Ford GT 2005 vehicle was designed for performance, timing, cost, and styling to preserve Ford GT40 vintage look. In this vehicle program, many advanced manufacturing processes and light materials were deployed including aluminum and magnesium. This paper briefly explains one unique design concept for a Ford GT instrument panel comprised of a structural magnesium cross-car beam and other components, i.e. radio box and console top, which is believed to be the industry's first structural I/P from vehicle crash load and path perspectives. The magnesium I/P design criteria include magnesium casting properties, cost, corrosion protection, crashworthiness assessments, noise vibration harshness performance, and durability. Magnesium die casting requirements include high pressure die cast process with low casting porosity and sound quality, casting dimensional stability, corrosion protection and coating strategy, joining and assembly constraints.
Technical Paper

A Comparison of the Effect of E85 vs. Gasoline on Exhaust System Surface Temperatures

2007-04-16
2007-01-1392
With concerns over increasing worldwide demand for gasoline and greenhouse gases, many automotive companies are increasing their product lineup of vehicles to include flex-fuel vehicles that are capable of operating on fuel blends ranging from 100% gasoline up to a blend of 15% gasoline/85% ethanol (E85). For the purpose of this paper, data was obtained that will enable an evaluation relating to the effect the use of E85 fuel has on exhaust system surface temperatures compared to that of regular unleaded gasoline while the vehicle undergoes a typical drive cycle. Three vehicles from three different automotive manufacturers were tested. The surface of the exhaust systems was instrumented with thermocouples at specific locations to monitor temperatures from the manifold to the catalytic converter outlet. The exhaust system surface temperatures were recorded during an operation cycle that included steady vehicle speed operation; cold start and idle and wide open throttle conditions.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Diesel Lean Nox Trap Model for Control Strategy Verification

2004-03-08
2004-01-0526
Lean NOx traps are considered as a possible means to reduce diesel powertrain tail pipe NOx emissions to future stringent limits. Several publications have proposed models for lean NOx traps [1, 2, 3 and 4]. This paper focuses on a lean NOx trap model that can be used for the verification of control strategies before these strategies are implemented in target microprocessors. Strategy verification in a simulation environment is a crucial tool for reducing control strategy development and implementation time.
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

1998-10-19
982644
A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

A NOx Reduction Solution for Retrofit Applications: A Simple Urea SCR Technology

2005-04-11
2005-01-1857
This paper presents the development and performance of a Selective Catalytic Reduction (SCR) aftertreatment system designed for diesel retrofit applications. It has been proven that Urea SCR represents a convenient and very efficient solution for NOx reduction that can be used for stationary and mobile powerplants with NOx reduction efficiencies that can exceed 95%. The cooperative efforts between ServoTech Engineering, Ford Motor Company, KleenAir Systems, Tenneco, and the City of Dearborn have led to the development of a simple aftertreatment system for NOx reduction. This system consists of a catalyzed diesel particulate filter (CDPF), a SCR catalyst system, and a diesel oxidation catalyst. As part of the system, an effective and compact air-assisted dosing unit developed by ServoTech Engineering in collaboration with Ford Motor Company was used for effective urea delivery and atomization.
Technical Paper

A New Approach of Accelerated Life Testing for Metallic Catalytic Converters

2004-03-08
2004-01-0595
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) requirements for high mileage durability of emission components make it necessary to ensure the mechanical robustness of metallic catalytic converters. In addition, the robustness of design features must be assessed in the early design development phase without resorting to vehicle fleet testing. By following established reliability methods, a new approach for time and cost efficient accelerated durability testing was developed, which can account for the combined effects of critical stressors of a metallic catalytic converter. This paper describes the methodology used to determine the critical stressors and their levels in actual operating conditions which were determined by analyzing a broad range of vehicle test information. This information was used to develop a temperature profile and a high vibration load profile for the new life test method.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

A Novel Methodology to Characterize the Thermal Behavior of Automotive Seats

2021-04-06
2021-01-0204
An automobile seat’s thermal performance can be challenging to quantify since it requires comprehensive human subject testing. Seat manufacturers must rely on subjective ratings to understand how the construction of a seat and its underlying heating and cooling technology may compare to other seats. Other factors may influence seat ratings published by global marketing information services companies (e.g., JD Power and Associates). In particular, occupants may be biased by the vehicle class in which a seat is installed and by how much the contribution of a specific vehicle’s HVAC system performance affects the perception of seat thermal comfort. Therefore, there is a need for an objective testing methodology that does not rely on human participants but is still capable of producing a thermal performance rating in terms of established thermal comfort scales.
Technical Paper

A Parametric DOE Study of Various Factors that Influence the CD Temperature in Automotive Radios

2005-04-11
2005-01-0566
A continuous demand for added multimedia features in the automotive audio systems not only requires adequate cooling of the internal electronics, but also the media itself. Thermal engineers focus their efforts only on keeping the electronics below thresholds by conventional methods such as internal fans, heat sinks, etc., while overlooking the CD media. The environment within the instrument panel (IP) poses a challenge in maintaining the media at a temperature level that is comfortable to the human touch. This paper investigates the effectiveness of various factors that influence the CD temperature in a car player. These factors represent independent and interactive effects of the three modes of heat transfer. In this study, a design of experiment (DOE) technique is utilized to generate a response function that filters insignificant parameters and their interactions, in order to minimize the CD temperature.
Technical Paper

A Phenomenological Control Oriented Lean NOx Trap Model

2003-03-03
2003-01-1164
Lean NOx Trap (LNT) is an aftertreatment device typically used to reduce oxides of nitrogen (NOx) emissions for a lean burn engine. NOx is stored in the LNT during the lean operation of an engine. When the air-fuel ratio becomes rich, the stored NOx is released and catalytically reduced by the reductants such as CO, H2 and HC. Tailpipe NOx emissions can be significantly reduced by properly modulating the lean (storage) and rich (purge) periods. A control-oriented lumped parameter model is presented in this paper. The model captures the key steady state and transient characteristics of an LNT and includes the effects of the important engine operating parameters. The model can be used for system performance evaluation and control strategy development.
Technical Paper

A Research Study on a Curved Radiator Concept for Automotive Engine Cooling

2017-03-28
2017-01-0631
The need to increase the fuel-efficiency of modern vehicles while lowering the emission footprint is a continuous driver in automotive design. This has given rise to the use of engines with smaller displacements and higher power outputs. Compared to past engine designs, this combination generates greater amounts of excess heat which must be removed to ensure the durability of the engine. This has resulted in an increase in the number and size of the heat exchangers required to adequately cool the engine. Further, the use of smaller, more aerodynamic front-end designs has reduced the area available in the engine compartment to mount the heat exchangers. This is an issue, since the reduced engine compartment space is increasingly incapable of supporting an enlarged rectangular radiator system. Thus, this situation demands an innovative solution to aid the design of radiator systems such that the weight is reduced while maintaining the engine within acceptable operating temperatures.
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Technical Paper

A Review of Modal Choice Models: Case Study for São Paulo

2017-11-07
2017-36-0279
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
Technical Paper

A Simplified Method to Make Temperature Measurements of a Metal Surface using the Surface as One Component of Thermocouple

2008-04-14
2008-01-0918
Instrumentation of an exhaust system to measure surface temperature at multiple locations usually involves welding independent thermocouples to the surface of the system. This report describes a new type of thermocouple fabricated to measure temperature at a point or temperature difference between points on a metallic object utilizing the metal as one component of the new thermocouple. AISI 316 stainless steel is used in the current study to represent automotive exhaust pipe. The other component of the thermocouple is Nickel-Chromium (Chromel, Chromega), one of the two metals used in type K thermocouples, which are generally used for exhaust temperature measurements during emission tests. Use of the new thermocouple is contingent upon an accurate calibration of its response to changes in temperature.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
X