Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes

2012-04-16
2012-01-0540
High cycle fatigue material properties are not uniformly distributed on cylinder heads due to the casting process. Virtual Aluminum Casting (VAC) tools have been developed within Ford Motor Company to simulate the effects of the manufacturing process on the mechanical properties of cast components. One of VAC features is the ability to predict the high cycle fatigue strength distribution. Residual stresses also play an important role in cylinder head high cycle fatigue, therefore they are also simulated and used in the head high cycle fatigue analysis. Cylinder head assembly, thermal and operating stresses are simulated with ABAQUS™. The operating stresses are combined with the residual stresses for high cycle fatigue calculations. FEMFAT™ is used for the high cycle fatigue analysis. A user-defined Haigh diagram is built based on the local material properties obtained from the VAC simulation.
Journal Article

Closed-Form Structural Stress Solutions for Fatigue Life Estimations of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2017-03-28
2017-01-0470
Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Technical Paper

Experimental Study of Mixed Mode Fatigue Crack Growth of Automotive Structural Adhesive BM4601

2017-03-28
2017-01-0331
Fatigue crack growth tests have been carried out to investigate the mixed mode fatigue crack propagation behavior of an automotive structural adhesive BM4601. The tests were conducted on a compound CMM (Compact Mixed Mode) specimen under load control with 0.1 R ratio and 3Hz frequency. A long distance moving microscope was employed during testing to monitor and record the real time length of the fatigue crack in the adhesive layer. The strain energy release rates of the crack under different loading angles, crack lengths and loads were calculated by using finite element method. The pure mode I and mode II tests show that an equal value of mode I strain energy release rate results in over ten times higher FCGR (Fatigue Crack Growth Rate) than the mode II stain energy release rate does. The mixed mode tests results show that under a certain loading angle, the mixed mode FCGR is changed by changing the load, which is contrary to the find in pure mode I and mode II tests.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Technical Paper

Frequency Effects on High-Density Polyethylene Failure under Cyclic Loading

2017-03-28
2017-01-0332
High density polyethylene (HDPE) is widely used in automotive industry applications. When a specimen made of HDPE tested under cyclic loading, the inelastic deformation causes heat generated within the material, resulting in a temperature rise. The specimen temperature would stabilize if heat transfer from specimen surface can balance with the heat generated. Otherwise, the temperature will continue to rise, leading to a thermo assist failure. It is shown in this study that both frequencies and stress levels contribute to the temperature rise. Under service conditions, most of the automotive components experience low cyclic load frequency much less than 1 Hz. However, the frequency is usually set to a higher constant number for different stress levels in current standard fatigue life tests.
Journal Article

Impact of Rivet Head Height on the Tensile and Fatigue Properties of Lap Shear Self-Pierced Riveted CFRP to Aluminum

2017-03-28
2017-01-0477
Tensile and fatigue properties of continuous braided carbon fiber reinforced polymer (CFRP) composite to AA6111 self-piercing riveted (SPR) lap shear joints are presented. Rivets were inserted at two target head heights separated by 0.3 mm. Even within the narrow range of head heights considered, the flushness of the rivet head was found to have a dominant effect on both the monotonic and fatigue properties of the lap shear SPR joints. Joints created with a flush head resulted in a greater degree of fiber breakage in the top ply of the CFRP laminate, which resulted in lower lap shear failure load as compared to SPR joints produced with a proud rivet head. Irrespective of the lap shear failure load, rivet pullout was the most common failure mode observed for both rivet head heights. In fatigue tests, the SPR joints produced with a proud head exhibited higher fatigue life compared to SPR joints produced with a flush head.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Technical Paper

Investigation of Mechanical Behavior of Chopped Carbon Fiber Reinforced Sheet Molding Compound (SMC) Composites

2020-04-14
2020-01-1307
As an alternative lightweight material, chopped carbon fiber reinforced Sheet Molding Compound (SMC) composites, formed by compression molding, provide a new material for automotive applications. In the present study, the monotonic and fatigue behavior of chopped carbon fiber reinforced SMC is investigated. Tensile tests were conducted on coupons with three different gauge length, and size effect was observed on the fracture strength. Since the fiber bundle is randomly distributed in the SMC plaques, a digital image correlation (DIC) system was used to obtain the local modulus distribution along the gauge section for each coupon. It was found that there is a relationship between the local modulus distribution and the final fracture location under tensile loading. The fatigue behavior under tension-tension (R=0.1) and tension-compression (R=-1) has also been evaluated.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
X