Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of a Frontal Rail Structure in a Frontal Collision

2002-03-04
2002-01-0688
In the course of developing a body-on-frame vehicle for barrier crash performance, automotive manufacturers must take into account numerous regulatory and corporate requirements. One of the most common barrier crash modes is the perpendicular front barrier crash used to verify compliance to F/CMVSS 208. The frontal rail or “horn” is the primary component that absorbs a significant amount of the vehicle's crash energy. The frontal rail collapse determines the vehicle deceleration. This paper evaluates several frontal horn designs for perpendicular front barrier impacts. Two basic frontal rail architectures are evaluated: a uniform rectangular cross section and a tapered cross section. For a 35 mph (15.65 m/s) impact test condition, a parametric design study was commenced to evaluate the affect of gauges, convolutions, triggers, and initiating holes for a total of eleven configurations.
Technical Paper

Fan Shroud Design for Low Speed Damageability

2017-03-28
2017-01-1300
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
Technical Paper

Pedestrian Head Impact Time Estimate based on Vehicle Geometric Parameters

2017-03-28
2017-01-1453
Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
X