Refine Your Search

Topic

Author

Search Results

Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

A Topographically Structural Optimization Methodology for Improving Noise Radiation in Transaxles

2007-05-15
2007-01-2287
In this paper, a new technology for the design of silent transaxles is developed, where topography optimization is adopted and an artificial parameter called β is proposed as an objective function, representing an upper bound of the surface velocity. The strategy of the optimization is to minimize β while getting the surface velocities less than β. as the constraints. A numerical example of reducing transaxle's radiated noise by using the new optimization technology is given in the paper. In the example, an entire Ford transaxle system was modeled numerically, where most internal components were included. First a modal frequency velocity analysis was conducted. Then an acoustic power analysis based on the Acoustic Transfer Vector (ATV) was carried out. Finally, a topography optimization based on the β - method for the transaxle was performed to minimize the radiated noise.
Technical Paper

A systematic review on smart coatings for automotive applications

2024-01-08
2023-36-0126
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection.
Technical Paper

Accuracy of Powertrain Control Module (PCM) Event Data Recorders

2008-04-14
2008-01-0162
The primary purpose of this paper is to evaluate the accuracy of speed data recorded in the Ford PCM under steady state conditions. The authors drove 3 different test vehicles at 5 different steady state speeds from 48 to 113 kph (30 to 70 mph), making 6 runs at each speed. The authors collected PCM data after each run. For the first vehicle a GPS based Racelogic VBOX III was used to measure speed. For the second and third vehicle a purpose built speed trap with .0001 second resolution was used. The authors compare the readings and calculated differences and statistical limits. The secondary purpose is to deliberately create conditions that could result in errors of speed measured, document the conditions, and to quantify the error.
Technical Paper

Aerodynamic Drag of Engine-Cooling Airflow With External Interference

2003-03-03
2003-01-0996
This report examines the aerodynamic drag and external interference of engine cooling airflow. Much of the report is on inlet interference, a subject that has not been discussed in automotive technical literature. It is called inlet spillage drag, a term used in the aircraft industry to describe the change in inlet drag with engine airflow. The analysis shows that the reduction in inlet spillage drag, from the closed front-end reference condition, is the primary reason why cooling drag measurements are lower than would be expected from free stream momentum considerations. In general, the free stream momentum (or ram drag) is the upper limit and overstates the cooling drag penalty. An analytical expression for cooling drag is introduced to help the understanding and interpretation of cooling drag measurements, particularly the interference at the inlet and exit.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

2008-06-17
2008-01-1897
Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Technical Paper

CAE-Driven Design for NVH Optimization of an Independent Rear Suspension Subframe

2002-11-19
2002-01-3464
The way a subframe for an independent rear suspension attaches to a unibody vehicle is critical for its NVH performance. The force path from the control arms to the body may, in some cases, pass through spots where some body vibration modes with relatively high acoustic radiation efficiency are excited, generating undesired peaks at some frequencies for point and transfer mobilities, as well as for acoustic transfer functions from the subframe to the driver's and passenger's ears. This paper describes a case study of an initial design for a subframe, where a vibration mode of the vehicle's rear underfloor panel was particularly strongly excited causing unacceptable both acoustic and vibrational behaviours, is modified through the evaluation of point mobility curves, as well as acoustic transfer functions, both obtained via finite elements method.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Technical Paper

Development of Ford Fire Suppression System

2005-04-11
2005-01-1791
This paper outlines the design and development of the Fire Suppression System (FSS) option for the 2005 Ford Crown Victoria Police Interceptor (CVPI). The FSS is designed to sense impact and activate two pyrotechnic hybrid devices that discharge fire suppressant foam.
Technical Paper

Development of a New Standard for Measurement of Impulse Noise Associated With Automotive Inflatable Devices

2005-05-16
2005-01-2398
The SAE Recommended Practice for measuring impulse noise from airbags, SAE J247, “Instrumentation for Measuring Acoustic Impulses within Vehicles”, was first published in 1971 and last affirmed in 1987. Many advances have occurred in understanding and technology since that time. Work in the automotive industry to investigate the characteristics of noise from airbag deployments has shown that large components of low frequency noise can be present when an airbag deploys in a closed vehicle. Others have shown that this low frequency noise can have a protective effect on the ear. Likewise, work for many years at the US Army Research Lab has investigated the risk of hearing loss for a human subjected to an acoustic impulse. That research led to the creation and validation of a mathematical model of the human ear, called Auditory Hazard Assessment Algorithm - Human (AHAAH).
Technical Paper

Development of a Thermal Model for a Heated Steering Wheel to Compensate Defective Feedback Variables

2017-03-28
2017-01-1636
Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
Journal Article

Durability Study of Automotive Additive Manufactured Specimens

2020-04-14
2020-01-0957
The long-term weathering behavior of three different 3D printable, non-stabilized, UV cure resin formulations (A and B with thiol-ene base, and C with acrylate chemistry) was studied using tensile testing, nano-indentation, and photoacoustic infrared (FTIR-PAS) spectroscopy. To this end, type I tensile bars were printed from each resin system using a 3D printer, and were post UV-cured under a broad spectrum source. Systems A and C showed a similar trend after weathering. They first experienced an increase in modulus and tensile strength, due to additional crosslinking of the residual unreacted species. This increase in mechanical properties was followed by a drop in modulus, tensile strength, and percent elongation, due to the over-crosslinking and consequent embrittlement. System B, however, showed remarkable retention of the mechanical properties before/after weathering.
Technical Paper

Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques

2000-06-19
2000-01-1904
Two-dimensional Mie-scattering and laser-induced fluorescence techniques were applied to investigate the effects of fuel composition on mixture formation within a firing direct-injection spark-ignition (DISI) engine. A comparison was made between the spray characteristics and in-cylinder fuel distributions resulting from the use of a typical multi-component gasoline (European specification premium-grade unleaded), a single-component research fuel (iso-octane), and a three-component research fuel (iso-pentane, iso-octane and n-nonane). Studies were performed at three different injection timings under cold and part-warm conditions. The results indicate that fuel composition affects both the initial spray formation and the subsequent mixture formation process. Furthermore, the sensitivity of the mixing process to the effects of fuel volatility was shown to depend on injection timing.
Technical Paper

Energy Efficiency as Industrial Management Practice: The Ford Production System and Institutionalizing Energy Efficiency

2006-04-03
2006-01-0829
Industrial motor-driven systems consume more than 70% of global manufacturing electricity annually and offer one of the largest opportunities for energy savings. System optimization techniques through the application of existing, commercially available technologies and accepted engineering practices typically achieve energy savings of 20% or more for these systems across all industrial sectors. The optimization opportunities for steam systems are at least equal or greater. Despite the potential benefits, energy savings from these industrial systems have remained largely unrealized by US industry. This paper presents the argument that unless energy efficiency is institutionalized, it will be viewed by corporate managers as something different than the effective and efficient use of labor and material resources. If this institutionalization does not occur, the potential benefits will never be achieved or sustained.
Technical Paper

Estimating Actual Exhaust Gas Temperature from Raw Thermocouple Measurements Acquired During Transient and Steady State Engine Dynamometer Tests

2007-04-16
2007-01-0335
Thermocouples are commonly used to measure exhaust gas temperature during automotive engineering experiments. In most cases, the raw measurements are used directly as an absolute indication of the actual exhaust gas temperature. However, in reality, the signal from a TC is only an indication of its own tip temperature. The TC indicated tip temperature can deviate significantly from the actual gas temperature due to factors such as thermal capacitance of the tip itself, and heat transfer to the exhaust pipe wall through conduction and radiation. A model has been developed that calculates the effects of these factors to provide an estimate of the actual exhaust gas temperature. Experiments were performed to validate the model under both transient and steady state engine dynamometer conditions utilizing three popular sizes of TCs. Good correlation among predictions for various TC sizes confirms the model's accuracy.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Experimental Study of Automotive Heat Shield Geometry with Natural Convection and Radiation Boundary Conditions

2001-05-14
2001-01-1746
Shielding a vehicle underbody is becoming a daunting task with increased exhaust temperatures due to emissions regulations and ever-increasing packaging constraints, which place components ever closer to exhaust systems. This experimental study was initiated to evaluate the two dimensional thermal effects of heat shield flange height and shield width in vehicle underbody idle conditions. The ultimate goal of this study is to develop a function to optimize the shape of heat shielding to achieve a specified floorpan temperature during vehicle idle conditions.
Technical Paper

FMVSS 226 Ejection Mitigation: A Review

2013-04-08
2013-01-0469
In January 2011, the National Highway Traffic Safety Administration (NHTSA) published a final rule establishing Federal Motor Vehicle Safety Standard (FMVSS) 226 Ejection Mitigation, with the intent of reducing the occurrence of complete and partial ejections of vehicle occupants during crashes, especially rollover events. FMVSS 226 requires component-level tests to be conducted on ejection mitigation countermeasures (e.g., rollover-activated side curtain airbags). A guided, linear impactor is used to propel a headform into a rollover-activated countermeasure at up to four locations for each side daylight opening in the vehicle, for up to three seating rows. The impact tests are conducted at two energy levels (speeds) and associated impact times: 278 J (20 km/h) at 1.5 s after curtain activation and 178 J (16 km/h) at 6 s. The FMVSSS 226 compliance criterion is that the headform cannot travel more than 100 mm past the inside surface of the side window plane.
X