Refine Your Search

Topic

Author

Search Results

Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Topographically Structural Optimization Methodology for Improving Noise Radiation in Transaxles

2007-05-15
2007-01-2287
In this paper, a new technology for the design of silent transaxles is developed, where topography optimization is adopted and an artificial parameter called β is proposed as an objective function, representing an upper bound of the surface velocity. The strategy of the optimization is to minimize β while getting the surface velocities less than β. as the constraints. A numerical example of reducing transaxle's radiated noise by using the new optimization technology is given in the paper. In the example, an entire Ford transaxle system was modeled numerically, where most internal components were included. First a modal frequency velocity analysis was conducted. Then an acoustic power analysis based on the Acoustic Transfer Vector (ATV) was carried out. Finally, a topography optimization based on the β - method for the transaxle was performed to minimize the radiated noise.
Technical Paper

A systematic review on smart coatings for automotive applications

2024-01-08
2023-36-0126
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection.
Technical Paper

Aerodynamic Drag of Engine-Cooling Airflow With External Interference

2003-03-03
2003-01-0996
This report examines the aerodynamic drag and external interference of engine cooling airflow. Much of the report is on inlet interference, a subject that has not been discussed in automotive technical literature. It is called inlet spillage drag, a term used in the aircraft industry to describe the change in inlet drag with engine airflow. The analysis shows that the reduction in inlet spillage drag, from the closed front-end reference condition, is the primary reason why cooling drag measurements are lower than would be expected from free stream momentum considerations. In general, the free stream momentum (or ram drag) is the upper limit and overstates the cooling drag penalty. An analytical expression for cooling drag is introduced to help the understanding and interpretation of cooling drag measurements, particularly the interference at the inlet and exit.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Technical Paper

Brakes Standards Interface Analysis Considering Brazilian, European and North American Regulations Focusing on Technologies Introduction

2015-05-13
2015-36-0027
It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time. As globally market is growing so fast as well new markets around the world, become fundamental the clearly understanding of these similarities, variants, peculiarities and correlated requirements.
Technical Paper

Breaking Load Method Evaluation of Sheet AA7075

2015-04-14
2015-01-0511
Increasing fuel economy is a high priority of the automotive industry due to consumer demand and government regulations. High strength aluminum alloys such as AA7075-T6 can be used in strength-critical automotive applications to reduce vehicle weight and thus improve fuel economy. However, these aluminum alloys are known to be susceptible to stress corrosion cracking (SCC) for thick plate. The level of susceptibility to SCC must be determined before a material is implemented. ASTM standards exist that generate semi-quantitative data primarily for use in screening materials for SCC. For the purposes of this work ASTM G139 (breaking load method) has been used to evaluate sheet AA7075-T6 for use in automotive applications. A tensile fixture applying a constant strain was used to quantitatively measure residual strength of the material after exposure to a corrosive environment.
Technical Paper

CAE-Driven Design for NVH Optimization of an Independent Rear Suspension Subframe

2002-11-19
2002-01-3464
The way a subframe for an independent rear suspension attaches to a unibody vehicle is critical for its NVH performance. The force path from the control arms to the body may, in some cases, pass through spots where some body vibration modes with relatively high acoustic radiation efficiency are excited, generating undesired peaks at some frequencies for point and transfer mobilities, as well as for acoustic transfer functions from the subframe to the driver's and passenger's ears. This paper describes a case study of an initial design for a subframe, where a vibration mode of the vehicle's rear underfloor panel was particularly strongly excited causing unacceptable both acoustic and vibrational behaviours, is modified through the evaluation of point mobility curves, as well as acoustic transfer functions, both obtained via finite elements method.
Technical Paper

Characterization of 6XXX Series Aluminum Extrusions Using Digital Image Correlation (DIC) technique

2017-03-28
2017-01-0316
Aluminum extrusions are used in the automotive industry for body structure applications requiring cross-section design flexibility, high section stiffness, and high strength. Heat-treatable 6xxx series extrusion alloys have typically been used in automotive due to commercial availability, competitive cost, high strength, and impact performance. This paper presents a characterization study of mechanical properties of 6xxx series aluminum extrusions using digital image correlation (DIC). DIC has been used to capture spatial strain distribution and its evolution in time during material deformation. The materials of study were seamless and structural 6061 and 6082 extrusions. The alloys have been tensile tested using an MTS load frame with a dual optical camera system to capture the stereoscopic digital images. Notable results include the differing anisotropy of seamless and structural extrusions, as well as the influence of artificial aging on anisotropy.
Technical Paper

Constrained Control of UAVs Using Adaptive Anti-windup Compensation and Reference Governors

2009-11-10
2009-01-3097
Gliders can climb to substantial altitudes without employing any on-board energy resources but using proper piloting skills to utilize rising air currents called thermals. Recent experiments on small Unmanned Aerial Vehicles (UAVs) indicate a significant potential to increase both the flight velocity and the range of gliders by means of such maneuvers. In these experiments the velocity to approach a thermal has been recognized as a critical performance factor, and is chosen as the controlled variable. Accurate longitudinal controllers are required to track the optimal flight trajectories generated using path planning algorithms. These controllers are challenged by the presence of uncertain and time-varying aircraft dynamics, gust disturbances, and control actuator limitations.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

Development of Ford Fire Suppression System

2005-04-11
2005-01-1791
This paper outlines the design and development of the Fire Suppression System (FSS) option for the 2005 Ford Crown Victoria Police Interceptor (CVPI). The FSS is designed to sense impact and activate two pyrotechnic hybrid devices that discharge fire suppressant foam.
Technical Paper

Development of a Thermal Fatigue Test Bench for Cylinder Head Materials

2018-04-03
2018-01-1410
An innovative specimen design and test system for thermal fatigue (TF) analysis is developed to compare the fatigue behavior of different cylinder head materials under realistic cyclic thermal loadings. Finite element analyses were performed to optimize the specimen geometry and thermal cycles. The reduced section of the TF specimen is heated locally by a high frequency induction heater and cooled by compressed air. The mechanical strain is then induced internally by the non-uniform thermal gradient generated within the specimen to closely simulate what valve bridges in cylinder heads experience in real operation. The resulting fatigue life is a function not only of the inherent fatigue resistance of the alloys, but also of other relevant properties such as thermal conductivity, modulus of elasticity, and coefficient of thermal expansion. This test is an essential tool for comparing different alloys for thermal fatigue applications.
Technical Paper

Development of a Thermal Model for a Heated Steering Wheel to Compensate Defective Feedback Variables

2017-03-28
2017-01-1636
Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
Journal Article

Durability Study of Automotive Additive Manufactured Specimens

2020-04-14
2020-01-0957
The long-term weathering behavior of three different 3D printable, non-stabilized, UV cure resin formulations (A and B with thiol-ene base, and C with acrylate chemistry) was studied using tensile testing, nano-indentation, and photoacoustic infrared (FTIR-PAS) spectroscopy. To this end, type I tensile bars were printed from each resin system using a 3D printer, and were post UV-cured under a broad spectrum source. Systems A and C showed a similar trend after weathering. They first experienced an increase in modulus and tensile strength, due to additional crosslinking of the residual unreacted species. This increase in mechanical properties was followed by a drop in modulus, tensile strength, and percent elongation, due to the over-crosslinking and consequent embrittlement. System B, however, showed remarkable retention of the mechanical properties before/after weathering.
Technical Paper

Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques

2000-06-19
2000-01-1904
Two-dimensional Mie-scattering and laser-induced fluorescence techniques were applied to investigate the effects of fuel composition on mixture formation within a firing direct-injection spark-ignition (DISI) engine. A comparison was made between the spray characteristics and in-cylinder fuel distributions resulting from the use of a typical multi-component gasoline (European specification premium-grade unleaded), a single-component research fuel (iso-octane), and a three-component research fuel (iso-pentane, iso-octane and n-nonane). Studies were performed at three different injection timings under cold and part-warm conditions. The results indicate that fuel composition affects both the initial spray formation and the subsequent mixture formation process. Furthermore, the sensitivity of the mixing process to the effects of fuel volatility was shown to depend on injection timing.
Technical Paper

Estimating Actual Exhaust Gas Temperature from Raw Thermocouple Measurements Acquired During Transient and Steady State Engine Dynamometer Tests

2007-04-16
2007-01-0335
Thermocouples are commonly used to measure exhaust gas temperature during automotive engineering experiments. In most cases, the raw measurements are used directly as an absolute indication of the actual exhaust gas temperature. However, in reality, the signal from a TC is only an indication of its own tip temperature. The TC indicated tip temperature can deviate significantly from the actual gas temperature due to factors such as thermal capacitance of the tip itself, and heat transfer to the exhaust pipe wall through conduction and radiation. A model has been developed that calculates the effects of these factors to provide an estimate of the actual exhaust gas temperature. Experiments were performed to validate the model under both transient and steady state engine dynamometer conditions utilizing three popular sizes of TCs. Good correlation among predictions for various TC sizes confirms the model's accuracy.
Technical Paper

Experimental Characterization of Aluminum Alloys for the Automotive Industry

2023-02-10
2022-36-0031
Several factors stimulate the development of new materials in the industry. From specific physical-chemical characteristics to strategic market advantages, technology companies seek to diversify their raw materials. In the automotive sector, the current trend of electrification in vehicles and the increase of government and market demand for reducing the emission of greenhouse gases makes lighter materials more and more necessary. As electric vehicles use heavy batteries, the vehicle weight is directly related to its power demand and level of autonomy. The same applies to internal combustion vehicles where the vehicle weight directly impacts fuel consumption and emissions. In this context, there is a lot of research on special alloys and composites to replace traditional materials. Aluminum is a good alternative to steel due to its density which is almost five times smaller while that material still has good mechanical properties and has better impact absorption capability.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Experimental Study of Automotive Heat Shield Geometry with Natural Convection and Radiation Boundary Conditions

2001-05-14
2001-01-1746
Shielding a vehicle underbody is becoming a daunting task with increased exhaust temperatures due to emissions regulations and ever-increasing packaging constraints, which place components ever closer to exhaust systems. This experimental study was initiated to evaluate the two dimensional thermal effects of heat shield flange height and shield width in vehicle underbody idle conditions. The ultimate goal of this study is to develop a function to optimize the shape of heat shielding to achieve a specified floorpan temperature during vehicle idle conditions.
X